

FACULTY OF ENGINEERING AND TECHNOLOGY

CURRICULUM, PRE-REQUISITES/ CO-REQUISITES CHART, AND SYLLABUS FOR B.TECH UNDER CHOICE BASED FLEXIBLE CREDIT SYSTEM REGULATIONS 2015

(For students admitted from 2015-16 onwards)

Specialization : ELECTRICAL AND ELECTRONICS ENGINEERING Offering Department : ELECTRICAL AND ELECTRONICS ENGINEERING

Placed in the 32nd Academic Council Meeting held on 23rd July 2016

CONTENTS

COURSE CODE	TOPIC / COURSE TITLE	PAGE NUMB ER
	STUDENT OUTCOMES AND C-D-I-O	Ш
	ABBREVIATIONS	IV
	CURRICULUM – CORE COURSES	V
	CURRICULUM – ELECTIVE COURSES	VII
	PRE/CO REQUISITES LIST	VIII
	PRE/CO REQUISITES FLOW CHART	IX
1	YEAR - I, SEMESTER - I	
15EE101	BASIC ELECTRICAL ENGINEERING	1
15EE102L	ELECTRICAL ENGINEERING PRACTICES	3
155510.2	YEAR - I, SEMESTER - II	
15EE103	ANALYSIS OF ELECTRIC CIRCUITS	4
15EE103L	ELECTRIC CIRCUITS LABORATORY	6
1555004	YEAR – II, SEMESTER – I	7
15EE204	ELECTRICAL MACHINES-I	7
15EE204L	ELECTRICAL MACHINES LABORATORY- I	9
15EE205	ELECTROMA GNETIC THEORY	10
15EE206	DIGITAL SYSTEM DESIGN ELECTRICAL AND ELECTRONICS MEASUREMENTS AND	12
15EE207		14
15EE208	INSTRUMENTATION ELECTRON DEVICES AND CIRCUITS	16
15EE208	ANALOG AND DIGITAL CIRCUITS LABORATORY	10
IJEE209L	YEAR – II SEMESTER – II	10
15EE210	ELECTRICAL MACHINES II	19
15EE210L	ELECTRICAL MACHINES II ELECTRICAL MACHINES LABORATORY II	21
15EE210L	CONTROL SYSTEMS	21
15EE212L	MEASUREMENTS AND CONTROL SYSTEMS LABORATORY	22
15EE212L	GENERATION, TRANSMISSION AND DISTRIBUTION	24
1312213	YEAR – III, SEMESTER – I	23
15EE301J	POWER ELECTRONICS	27
15EE302	POWER SYSTEM PROTECTION	29
15EE303	DISCRETE TRANSFORMS AND SIGNAL PROCESSING	31
15EE375L/	MINOR PROJECT I/	39
15EE380L/	SEMINAR I/	43
15EE385L/	MASSIVE OPEN ONLINE COURSES (MOOCS) I/	49
15EE490L	INDUSTRY MODULE I	53
15EE390L	INDUSTRIAL TRAINING I (TO BE UNDERGONE AT THE END OF II YEAR)	56
	YEAR – III, SEMESTER – II	
15EE304	POWER SYSTEM ANALYSIS	33
15EE305J	MICROCONTROLLERS	35
15EE306M	MULTI DISCIPLINARY DESIGN	37
15EE376L/		41
15EE381L/	MINOR PROJECT II/ SEMINAR II / MASSIVE OPEN ONLINE COURSES	46
15EE386L/	(MOOCS) II/ INDUSTRY MODULE II	51
15EE491L		54
	YEAR – IV, SEMESTER – I	
15EE401	SOLID STATE DRIVES	55
15EE401L	ELECTRIC DRIVES LABORATORY	57
15EE402	POWER SYSTEM OPERATION AND CONTROL	58
15EE403L	POWER SYSTEM LABORATORY	60
	YEAR – IV, SEMESTER – II	
15EE496L	MAJOR PROJECT /PRACTICE SCHOOL	61
	ELECTIVE COURSES	
	DEPARTMENT ELECTIVE I (TO BE OFFERED IN II SEMESTER OF II YEAR)	
15EE251E	SUSTAINABLE ENERGY	63
15EE252E	ELECTRICAL POWER UTILIZATION AND ILLUMINATION	65

COURSE CODE	TOPIC / COURSE TITLE	PAGE NUMB ER
15EE253E	ADVANCED TOPICS IN ELECTRICAL INSULATION	67
15EE254E	INSTRUMENTATION SYSTEMS	69
	DEPARTMENT ELECTIVE II (TO BE OFFERED IN I AND II	
	SEMESTER OF III YEAR)	
15EE351E	POWER QUALITY	71
15EE352E	ADVANCED CONTROL THEORY	73
15EE353E	MODERN OPTIMIZATION TECHNIQUES	75
15EE354E	SPECIAL ELECTRICAL MACHINES	77
15EE355E	HVDC AND EHVAC SYSTEMS	79
15EE356E	PHOTONICS	81
15EE357E	POWER SYSTEM HARMONICS	83
15EE358E	ADVANCED CMOS DEVICES AND TECHNOLOGY	85
15EE359E	INDUSTRIAL POWER SYSTEMS	87
15EE361E	FLEXIBLE AC TRANSMISSION SYSTEMS	89
15EE362E	HIGH VOLTAGE ENGINEERING	91
15EE363E	POWER CONVERTER ANALYSIS AND DESIGN	93
15EE365E	MODELING AND ANALYSIS OF ELECTRICAL MACHINES	95
15EE367E	DESIGN OF ELECTRICAL MACHINES	97
	DEPARTMENT ELECTIVE V AND VI	
	(TO BE OFFERED IN I SEMESTER OF IV YEAR)	
15EE451E	POWER SYSTEM DYNAMICS	99
15EE452E	MODERN POWER SYSTEM ANALYSIS	101
15EE453E	POWER SYSTEM DEREGULATION	103
15EE454E	DISTRIBUTED ENERGY RESOURCES	105
15EE455E	SMART GRID	107
15EE456E	ENERGY MANAGEMENT SYSTEM AND SCADA	109
15EE457E	HYBRID ELECTRIC VEHICLES	111
15EE458E	FINITE ELEMENT ANALYSIS FOR ELECTRICAL MACHINES	113
15EE459E	SOLAR PHOTOVOLTAIC SYSTEMS	115
15EE460E	VEHICULAR POWER SYSTEMS	117
15EE461E	ROBUST CONTROL SYSTEMS	119
15EE462E	SWITCHED MODE POWER CONVERSION	121
15EE463E	EMBEDDED SYSTEMS	123
	CUSTOMIZED TO OTHER DEPARTMENTS	
15EE231	ELECTRICAL MACHINES	125
15EE231L	ELECTRICAL MACHINES LABORATORY	127
15EE232	ELECTRICAL ENGINEERING AND CONTROL SYSTEMS	128
15EE234J	FUNDAMENTALS OF CIRCUITS AND NETWORKS	130

STUDENT OUTCOMES

The curriculum and syllabus for B.Tech programs (2013) conform to outcome based teaching learning process. In general, ELEVEN STUDENT OUTCOMES (a-k) have been identified and the curriculum and syllabus have been structured in such a way that each of the courses meets one or more of these outcomes. Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire as they progress through the program. Further each course in the program spells out clear instructional objectives which are mapped to the student outcomes.

The student outcomes are:

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

C-D-I-O INITIATIVE

The CDIO Initiative (CDIO is a trademarked initialism for **Conceive** — **Design** — **Implement** — **Operate**) is an innovative educational framework for producing the next generation of engineers. The framework provides students with an education stressing engineering fundamentals set in the context of Conceiving — Designing — Implementing — Operating real-world systems and products. Throughout the world, CDIO Initiative collaborators have adopted CDIO as the framework of their curricular planning and outcome-based assessment.

In the syllabus, every topic has been classified under one or more of C-D-I-O so that students and faculty alike are clear about the scope of learning to take place under each one of the topics.

SYMBOLS AND ABBREVIATIONS

AR	 Architecture Courses
В	 Courses under Basic Science and Mathematics
BT	 Biote chnology Courses
C-D-I-O	 Conceive-Design-Implement-Operate
CE	 Civil Engineering Courses
CS	 Computer Science and Engineering Courses
СҮ	 Chemistry Courses
Dept.	 Department of Civil Engineering
E with course code	 Elective Courses
Ε	 Courses under Engineering Sciences
EC	 Electronics and Communication Engineering Courses
EE	 Electrical and Electronics Engineering Courses
G	 Courses under Arts and Humanities
IOs	 Instructional Objectives
L	 Laboratory / Project / Industrial Training Courses
LE	 Language Courses
L-T-P-C	 L- Lecture Hours Per Week
	T- Tutorial Hours Per Week
	P- Practical Hours Per Week
	C- Credits for a Course
Μ	 Courses with Multi Disciplinary Content
MA	 Mathematics Courses
ME	 Mechanical Engineering Courses
NC	 NCC- National Cadet Corps
NS	 NSS – National Service Scheme
Р	 Professional Core Courses
PD	 Personality Development Courses
PY	 Physics Courses
SO/SOs	 Student Outcomes (a-k)
SP	 NSO- National Sports Organization
YG	 Yoga Course

FACULTY OF ENGINEERING AND TECHNOLOGY, SRM UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

B.TECH ELECTRICAL AND ELECTRONICS ENGINEERING CHOICE BASED FLEXIBLE CREDIT SYSTEM (CBFCS) Curriculum Under Regulations 2015 (For students admitted from 2015-16 onwards)

						1001			EDII 5	101		(021 05) 0	urriculum Under Regulations 2015	、 、					,			
L	Lecture Week	Hours /	T Tutorial Hours / Week	C	Cre	dits		P Practical Hours / Week	L	Labo	orato	ry Course	E Elective Courses	J	T	Theo		ointly with ab	M Course with Multidisciplin	ary c	cont	ent
ry	-y- of ts						Year 1											Year 2				
ego	edit		1st Semester					2nd Semester					1st Semester						2nd Semester			
Category	Category - wise % of Credits	Course Code	Course Title	L	Т	P C	Course Code	Course Title	LT	P	С	Course Code	Course Title	L	Т	Р	С	Course Code	Course Title	L	Т	P C
۲ Ъ		15LE101	English	2	0	0 2	15LE102	Value Education	2 0	0	2	15LE201E	German Language I					15LE207E	German Language II		\square	
les-(15PD101	Soft Skills I	1	1	0 1	15PD102	Soft Skills II	1 1	0	1	15LE202E	French Language I					15LE208E	French Language II			
Humanitie							15NC101	NCC- National Cadet Corps					Japanese Language I	2	0	0	2	15LE209E	Japanese Language II	2	0	0 2
uma	8.33%						15NS101	NSS- National Service Scheme					Korean Language I						Korean Language II			
							15SP101	NSO- National Sports Organization	0 0	1	1		Chinese Language I					15LE211E	Chinese Language II		\square	\square
Arts &							15YG101	Yoga					Quantitative Aptitude & Logical Reasoning –I	1	1	0	1	15PD202	Verbal Aptitude	1	1	0 1
ł	15		Total	3	1	0 3		Total	3 1	1	4		Total	3	1	0	3		Total	3	1	03
B		15MA101	Calculus And Solid Geometry	3	1	0 4	15MA102	Advanced Calculus And Complex Analysis	3 1	0	4	15MA201	Transforms And Boundary Value Problems	4	0	0	4	15MA206	Numerical Methods	4	0	0 2
1		15PY101	Physics	3	0	0 3	15PY102L	Materials Science	2 0	2	3										\square	
Sciences	21.67%	15PY101L	Physics Laboratory	0	0	2 1	15CY102	Principles Of Environmental Science	2 0	0	2											
Sci		15CY101	Chemistry			0 3																
Basic		15CY101L	Chemistry Laboratory			2 1															\square	
B		15BT101	Biology For Engineers			0 2																
	39		Total	11	1	4 14	1	Total	7 1				Total	4	0	0	4		Total	4	0	0 4
영 퍼		15CE101	Basic Civil Engineering	_	Ň	0 2		Basic Mechanical Engineering	2 0												\square	
eerii ees -	8.33%		Basic Electrical Engineering	_	Ť	0 2		Basic Electronics Engineering	2 0												\square	μ
Engineering Sciences -E			Engineering Graphics	1	0	4 3		Electronics Engineering Practices	0 0	_											\square	┢┻╋
En	15	15CS101L	Programming Laboratory	1	0	2 2 6 9	_	Electrical Engineering Practices	0 0				Total	0	0	0	0		Total	0	0	
	13								3 0			150004					2	15EE210			0	
				_	$\left \right $	+		Analysis of Electric Circuits	+ +	-	3		Electrical Machines-1						Electrical Machines II	+ +		
							115001021	Electric Circuits Laboratory			11	15EE204L	Floatrical Machines Laboratory			2	2	15EE210L	Electrical Machines Laboratory II		$- \alpha$	3 2
e -P							15EE103L	Electric circuits Eaboratory	0 0	2	+ +		Electrical Machines Laboratory I	0	0	5			5	0	0	5 .
Cor	38 33%				$\left \right $	+	IJEE103L				$\left \right $		Electromagnetic Theory				3	15EE211	Control Systems		0	
	38.33%											15EE205	Electromagnetic Theory	3	0	0			-	3	0	0 3
	38.33%						IJEE103L					15EE205	Electromagnetic Theory Digital System Design	3	0	0		15EE211 15EE212L	Control Systems	3		0 3
- sional	38.33%											15EE205 15EE206	Electromagnetic Theory	3	0 0	0 0	3		Control Systems Measurements and Control systems	3	0	0 3 2 1
Professional -	38.33%											15EE205 15EE206 15EE207	Electromagnetic Theory Digital System Design Electrical and Electronic	3 3 3	0 0 0	0 0 0	3	15EE212L	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and	3 0 3	0	0 3 2 1
Professional -	38.33%											15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits	3 3 3 3	0 0 0	0 0 0	3 3 3	15EE212L 15EC204 J	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits	3 0 3	0 0 0	0 3 2 1
Professional -												15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory	3 3 3 3 0	0 0 0 0	0 0 0 3	3 3 3 2	15EE212L 15EC204 J	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution	3 0 3 3	0 0 0	0 3 2 1 2 4 0 3
Professional -	38.33% 69		Total	0		0 0		Total	3 0		4	15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits	3 3 3 3 0	0 0 0 0	0 0 0	3 3 3 2	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total	3 0 3 3 12	0 0 0 0	0 3 2 1 2 4 0 3 7 10
- Ve			Image: Control of the second secon	0	0	0 0					4	15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory	3 3 3 3 0	0 0 0 0	0 0 0 3	3 3 3 2	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution	3 0 3 3 12	0 0 0 0	0 3 2 1 2 4 0 3
oi - ctive -P	69 8.33%							Total	3 0	2		15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total	3 3 3 3 0 15	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I	3 0 3 3 12 3	0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3
Prot - Elective s - P	69		Image: Constraint of the second se			0 0				2		15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory	3 3 3 3 0	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total	3 0 3 3 12 3	0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10
Proi - Elective s - P	69 8.33%							Total	3 0	2		15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total	3 3 3 3 0 15	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I	3 0 3 3 12 3	0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3
Proi - Elective s - P	69 8.33% 18							Total	3 0	2		15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total	3 3 3 3 0 15	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I	3 0 3 3 12 3	0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3
Proi - Elective s - P	69 8.33%							Total	3 0	2		15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total	3 3 3 3 0 15	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I	3 0 3 3 12 3	0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3
Proi - Elective s - P	69 8.33% 18							Total	3 0	2		15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total	3 3 3 3 0 15	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I	3 0 3 3 12 3	0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3
Proi - Elective s - P	69 8.33% 18 8.33%		Total	0		000		Total Total Total	3 0	2	0	15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total Total	3 3 3 0 15 0	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19 0	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I Total	3 0 3 3 3 12 3 3 3	0 0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3 0 3
Project / Seminar / Elective Internship-P s - P	69 8.33% 18			0				Total	3 0	2	0	15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total	3 3 3 3 0 15	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19 0	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I	3 0 3 3 3 12 3 3 3	0 0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3
Project / Seminar / Elective Internship-P s - P	69 8.33% 18 8.33%		Total	0		000		Total Total Total	3 0	2	0	15EE205 15EE206 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total Total	3 3 3 0 15 0	0 0 0 0 0	0 0 0 3 6	3 3 3 2 19 0	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I Total	3 0 3 3 3 12 3 3 3	0 0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3 0 3
Project / Seminar / Elective Internship-P s - P	69 8.33% 18 8.33%		Total Image: Total Image: Total Image: Total Image: Total	0		00		Total Total Total Total Total Total Total Total		2		15EE205 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total Total Total	3 3 3 0 15 0 0	0 0 0 0 0	0 0 0 3 6 0	3 3 2 19 0 0	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I Total Total	3 0 3 3 12 3 3 3 3 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
Prot - Elective s - P	69 8.33% 18 8.33% 18		Total			000		Total Total Total	3 0			15EE205 15EE207 15EE208 15EE209L	Electromagnetic Theory Digital System Design Electrical and Electronic Measurements and Instruentation Electron Devices and circuits Analog and Digital Circuits Laboratory Total Total	3 3 3 0 15 0	0 0 0 0 0 0	0 0 0 3 6 0 0	3 3 2 19 0 0 0	15EE212L 15EC204 J 15EE213	Control Systems Measurements and Control systems Laboratory Linear Integrated Circuits Generation, Transmission and Distribution Total Dept Elective-I Total	3 0 3 3 12 3 3 3 3 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 3 2 1 2 4 0 3 7 10 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3

FACULTY OF ENGINEERING AND TECHNOLOGY, SRM UNIVERSITY

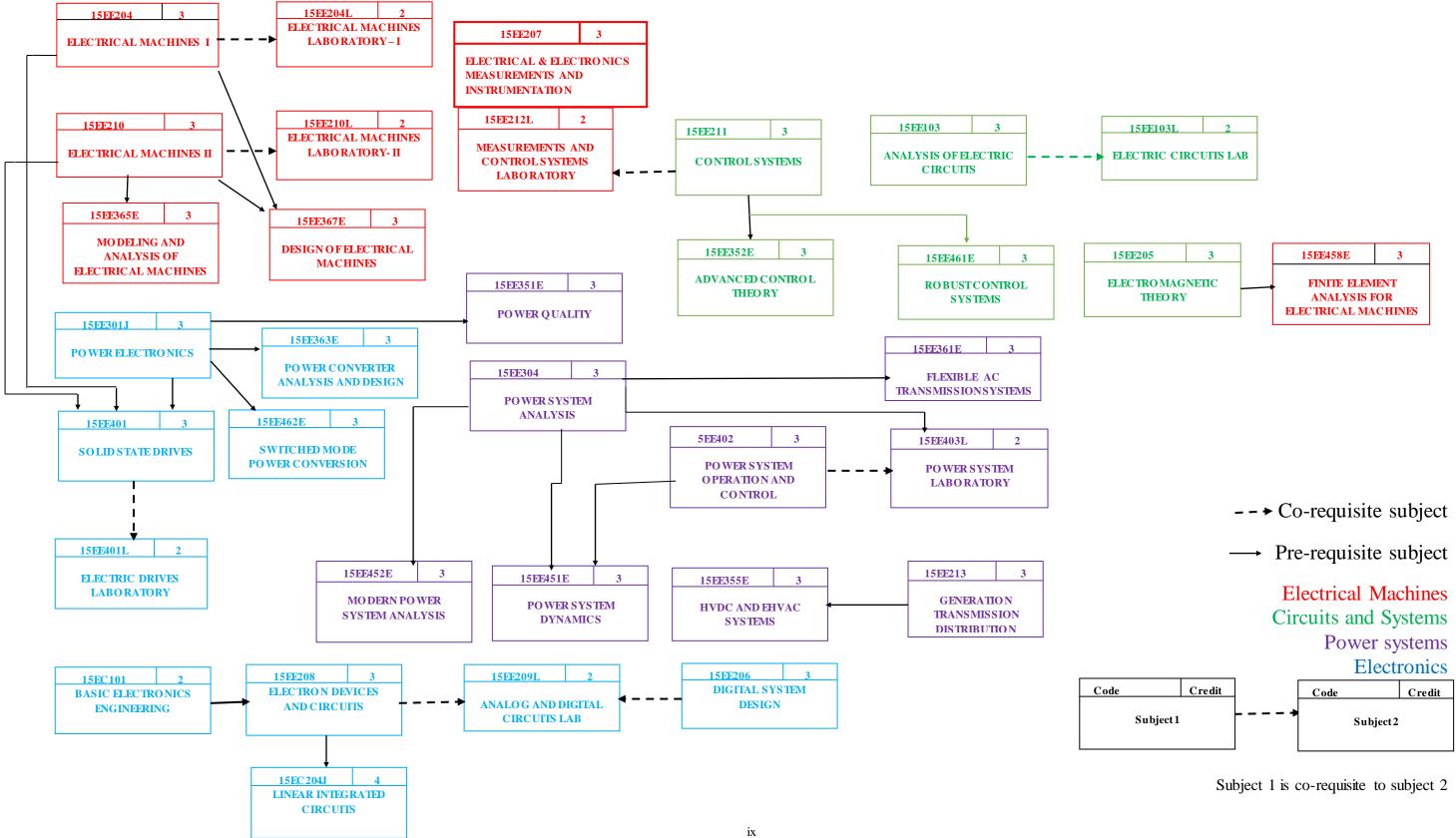
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

B.TECH ELECTRICAL AND ELECTRONICS ENGINEERING CHOICE BASED FLEXIBLE CREDIT SYSTEM (CBFCS) Curriculum Under Regulations 2015 (For students admitted from 2015-16 onwards) C Credits **P** Practical Theory jointly T | Tutorial Hours / Week L Lecture Hours / Week L Laboratory Course E Elective Courses .] Hours / Week Lab Year 3 Year 4 1st Semester 2nd Semester 1st Semester Course Code **Course Title** Course Code Course Title Т Р Course Code **Course Title** L Communication & Reasoning Quantitative Aptitude & Logical 15PD301 0 1 15PD302 1 1 0 1 1 Skills Reasoning -II Total 1 Total 1 1 0 1 Total 0 0 0 0 0 4 0 0 4 15MA301 0 4 15MA302 Probability and Statistics 4 0 **Discrete Mathematics** Total 4 0 0 4Total 4 0 0 4 Total 0 0 0 0 Total Total Total 0 0 0 00 3 15EE401 15EE301J Power Electronics 3 0 2 4 15EE304 Power System Analysis 3 0 Solid State Drives 3 0 0 3 15EE302 3 0 0 3 15EE305J 3 0 2 4 15EE401L Electric Drives Laboratory 0 0 3 2 Power System Protection Microcontrollers Discrete Transforms And Signal 2 2 15EE303 0 3 15EE306M 0 3 15EE402 3 0 Multi Disciplinary Design Power System Operation And Control 3 0 0 3 Processing 15EE403L Power System Laboratory 0 0 3 2 Total Total 2 10 Total 8 2 2 10 6 0 6 10 3 0 0 3 3 0 0 3 3 0 0 3 **Dept Elective-II** Dept Elective-III Dept Elective-V 3 0 0 3 3 0 0 3 **Dept Elective-IV** Dept Elective-VI Total 6 0 0 6 Total 3 0 0 3 Total 6 0 0 6 15EE375L/ Minor Project I / Seminar 15EE376L / Minor Project II / Seminar II / 15EF 15EE380L/ 15EE381L / Massive Open Online Courses Ι/ Massive Open 3 2 0 0 3 2 0 0 15EE385L/ Online Courses (MOOCS) I / 15EE386L / (MOOCS) II / Industry 15EE490L 15EE491L Industry Module I Module II Industrial Training I (To be done 15EE390L 3 after IV semester) Total 0 0 6 4 Total 0 0 3 2 Total 0 0 0 0 3 0 0 3 3 0 0 3 Open Elective I Open Elective II As per list / as taken by the student As per list / as taken by the student **ota** 0 3 Total 0 0 otal 20 1 8 25 22 3 5 26 **Total Contact hours** 29 **Total contact hours** 30 **Total contact hours** 18

Image: section of the section of th	d from	2015-	16 onwar	ds)	_			
Image: Second seco	with	Μ	Course		iscij	plin	ary	
rse CodeCourse TitleI.J.J.J.II				content				
rse CodeCourse TitleI.J.J.J.II			2	nd Compostor				
Image: section of the section of th								
Image: section of the section of th	e Code		Course T	ìtle	L	Т	Р	C
Image: section of the section of th								
Image: section of the section of th								
Image: section of the section of th								
Image: section of the section of th								
Image: section of the section of th								
Image: section of the section of th								
Image: Sector of the sector	,	Fotal			0	0	0	0
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector	,	Fotal			0	0	0	0
Image: Sector of the sector	-	lotai			0	0	0	0
Image: Sector of the sector								
Image: Sector of the sector								
Image: Sector of the sector								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra	ľ	Fotal			0	0	0	0
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
Total 0 0 0 E496L Major Project 0 0 24 Image: Straight of the stra								
E496L Major Project 0 0 24 Image: Second state st	ľ	Fotal			0	0	0	0
E496L Major Project 0 0 24 Image: Second state st								
E496L Major Project 0 0 24 Image: Second state st								
Total 0 0 24 Total 0 0 0 Total 0 0 0	,	Fotal			0	0	0	0
Total 0 0 24 Total 0 0 0 Total 0 0 0	496L	Maior	Project		0	0	24	12
Total 0 0 0			J					
Total 0 0 0								
Total 0 0 0								
Total 0 0 0								
	,	Fotal			0	0	24	12
	ſ	Fotal						0
Total contact hours 24		Te	tal conte	ot hours	0	0	24	12

Total contact hours 24

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING


FACULTY OF ENGINEERING AND TECHNOLOGY, SRM UNIVERSITY

DEPARTMENT ELECTIVES FOR B.Tech EEE DEGREE PROGRAMME UNDER CHOICE BASED FLEXIBLE CREDIT SYSTEM (CBFCS)

CODE	COURSE TITLE	L	Т	P	c	CODE	COURSE TITLE	L	T	P	c	CODE	COURSE TITLE	L	T	P	С
15EE254E	Instrumentation Systems	3	0	0	3	15EE354E	Special Electrical Machines	3	0	0	3	15EE458E	Finite Element Analysis For Electrical Machines	3	0	0	3
15BM324E	Principles Of Biomedical Instrumentation	3	0	0	3	15EE365E	Modeling And Analysis Of Electrical Machines	3	0	0	3	15EE457E	Hybrid Electric Vehicles	3	0	0	3
15EC226E	Sensors And Transducers	3	0	0	3	15EE367E	Design Of Electrical Machines	3	0	0	3	15MH301	Fundamendals Of Robotics	3	0	0	3
15EE251E	Sustainable Energy	3	0	0	3	15EE352E	Advanced Control Theory	3	0	0	3	15EE463E	Embedded Systems	3	0	0	3
15EE252E	Electrical Power Utilization And Illumination	3	0	0	3	15EC252	Principles Of Communication Systems	3	0	0	3	15EE461E	Robust Control Systems	3	0	0	3
15EE253E	Advanced Topics In Electrical Insulation	3	0	0	3	15EE356E	Photonics	3	0	0	3	15EE459E	Solar Photovoltaic Systems	3	0	0	3
15SE251E	Principles Of Object Oriented Programming	3	0	0	3	15EE358E	Advanced CMOS Devices And Technology	3	0	0	3	15EE454E	Distributed Energy Resources	3	0	0	3
						15EE363E	Power Converter Analysis And Design	3	0	0	3	15EE462E	Switched Mode Power Conversion	3	0	0	3
						15EE357E	Power System Harmonics	3	0	0	3	15EC352E	Introduction To VLSI Design	3	0	0	3
						15EE359E	Industrial Power Systems	3	0	0	3	15MH322E	Micro Electro Mechanical Systems	3	0	0	3
						15EE355E	HVDC And EHVAC Systems	3	0	0	3	15BM421E	Medical Electronics	3	0	0	3
						15EE361E	Flexible AC Transmission Systems	3	0	0	3	15EE451E	Power System Dynamics	3	0	0	3
						15EE362E	High Voltage Engineering	3	0	0	3	15EE452E	Modern Power System Analysis	3	0	0	3
						15EE351E	Power Quality	3	0	0	3	15EE453E	Power System Deregulation	3	0	0	3
						15EE353E	Modern Optimization Techniques	3	0	0	3	15EE455E	Smart Grid	3	0	0	3
						15CS251E	Fundamendals To Data Structures	3	0	0	3	15EE456E	Energy Management System And SCADA	3	0	0	3
						15CS203	Computer System Architecture	3	0	0	3	15EE460E	Vehicular Power Systems	3	0	0	3
						15CS322	Neuro Fuzzy And Genetic Programming	3	0	0	3	15IT470E	Fundamentals Of Big Data Analytics	3	0	0	3
						15CS401	Artificial Intelligence	3	0	0	3	15IT370E	Fundamentals Of Cloud Computing	3	0	0	3
						15IT371E	Computer Networking	3	0	0	3	15CS325E	Digital Image Processing	3	0	0	3
	COURSES CUSTOMIZED TO OTHER D	EPA	RT	ME	NT												
CODE	COURSE TITLE	L	Т	P	С	Course offered to											
15EE232	Electrical Engineering And Control Systems	3	0	0	3	CSE											
15EE231	Electrical Machines	3	0	0	3	E&I											
15EE231L	Electrical Machines Laboratory	0	0	3	2	E&I											
15EE234J	Fundamentals Of Circuits And Networks	3	0	2	4	BME											

	Department of Electrical and Elect	ronics Engineer	ing
	B. Tech Electrical and Electron	ics Engineering	
Course Code	Course Title	Prerequisite course	Co requisite courses
15EE103L	ELECTRIC CIRCUIT LABORATORY		15EE103
15EE204L	ELECTRICAL MACHINES LABORATORY - I		15EE204
15EE208	ELECTRON DEVICES AND CIRCUITS	15EC101	
15EC204J	LINEAR INTEGRATED CIRCUITS	15EE208	
15EE209L	ANALOG AND DIGITAL CIRCUITS LAB		15EE208,15EE206
15EE210L	ELECTRICAL MACHINES LABORATORY- II		15EE210
15EE212L	MEASUREMENTS AND CONTROL SYSTEMS LABORATORY		15EE207,15EE211
15EE352E	ADVANCED CONTROL THEORY	15EE211	
15EE355E	HVDC AND EHVAC SYSTEMS	15EE213	
15EE361E	FLEXIBLE AC TRANSMISSION SYSTEMS	15EE304	
15EE363E	POWER CONVERTER ANALYSIS AND DESIGN	15EE301J	
15EE365E	MODELING AND ANALYSIS OF ELECTRICAL MACHINES	15EE210	
15EE367E	DESIGN OF ELECTRICAL MACHINES	15EE204,15EE210	
15EE401L	ELECTRIC DRIVES LABORATORY		15EE401
15EE401	SOLID STATE DRIVES	15EE204, 15EE210, 15EE301J	
15EE403L	POWER SYSTEMS LABORATORY	15EE304	15EE402
15EE451E	POWER SYSTEM DYNAMICS	15EE304,15EE402	
15EE452E	MODERN POWER SYSTEM ANALYSIS	15EE304	
15EE458E	FINITE ELEMENT ANALYSIS FOR ELECTRICAL MACHINES	15EE205	
15EE461E	ROBUST CONTROL SYSTEMS	15EE211	
15EE462E	SWITCHED MODE POWER CONVERSION	15EE301J	
15EE351E	POWER QUALITY	15EE301J	

Faculty of Engineering and Technology **Department of Electrical and Electronics Engineering** B.Tech EEE Curriculum 2015-16, Pre-requisites and Co-requisites flowchart

DEPARTMENT OF EEE CURRICULUM 2015 REGULATION

		LEVEL 1 SEMESTER I				
Course Code	Category	Course Name	L	Т	Р	С
15LE101	G	English	2	0	0	2
15PD101	В	Soft Skills – I	1	1	0	1
15MA101	В	Calculus and Solid Geometry	3	1	0	4
15PY101	В	Physics	3	0	0	3
15PY101L	В	Physics Laboratory	0	0	2	1
15CY101	В	Chemistry	3	0	0	3
15CY101L	В	Chemistry Laboratory	0	0	2	1
15BT101	В	Biology for Engineers	2	0	0	2
15CE101	В	Basic Civil Engineering	2	0	0	2
15ME105L	В	Engineering Graphics	1	0	4	3
15CS101L	В	Programming Laboratory	0	0	3	2
15EE101	В	Basic Electrical Engineering	2	0	0	2
		TOTAL	19	2	11	26
		TOTAL CREDITS		2	6	

		LEVEL 1 SEMESTER II				
Course Code	Category	Course Name	L	Т	Р	С
15LE102	G	Value Education	2	0	0	2
15PD102	В	Soft Skills – II	1	1	0	1
15NS101/	G	NSS / NCC / NSO/ YOGA				
15NC101/			0	0	2	1
15SP101/			0	0	2	1
15YG101						
15MA102	В	Advanced Calculus and complex Analysis	3	1	0	4
15PY102L	В	Materials Science	2	0	2	3
15CY102	В	Principles of Environmental Science	2	0	0	2
15EC101	В	Basic Electronics Engineering	2	0	0	2
15EC102L	В	Electronics Engineering Practices	0	0	2	1
15EE102L	В	Electrical Engineering Practices	0	0	2	1
15ME101	В	Basic Mechanical Engineering	2	0	0	2
15EE103	Р	Analysis of Electric Circuits	3	0	0	3
15EE103L	Р	Electric Circuits Laboratory	0	0	2	1
		TOTAL	17	2	8	23
		TOTAL CREDITS		2	3	

		LEVEL 2 SEMESTER I				
Course Code	Category	Course Name	L	Т	Р	С
15LE201E/	В	German Language I/				
15LE202E/		French Language I/				
15LE203E/		Japanese Language I /	2	0	0	2
15LE204E/		Korean Language I /				
15LE205E		Chinese Language I				
15PD201	В	Quantitative aptitude and logical reasoning-I	1	1	0	1
15MA201	В	Transforms and Boundary Value Problems	4	0	0	4
15EE204	Р	Electrical Machines-1	3	0	0	3
15EE204L	Р	Electrical Machines Lab I	0	0	3	2
15EE205	Р	Electromagnetic Theory	3	0	0	3
15EE206	Р	Digital System Design	3	0	0	3
15EE207	Р	Electrical And Electronics Measurements	3	0	0	2
		And Instrumentation	3	0	0	3
15EE208	Р	Electron Devices And Circuits	3	0	0	3
15EE209L	Р	Analog And Digital Circuits Laboratory	0	0	3	2
		TOTAL	22	1	6	26
		TOTAL CREDITS		2	26	

		LEVEL 2 SEMESTER II				
Course Code	Category	Course Name	L	Т	Р	С
15LE207E/	В	German Language II/				
15LE208E/		French Language II/				
15LE209E/		Japanese Language II/	2	0	0	2
15LE210E/		Korean Language II/				
15LE211E		Chinese Language II				
15PD202	В	Verbal Aptitude	1	1	0	1
15MA206	В	Numerical Methods	4	0	0	4
15EE210	Р	Electrical Machines II	3	0	0	3
15EE210L	Р	Electrical Machines Laboratory II	0	0	3	2
15EE211	Р	Control Systems	3	0	0	3
15EE212L	Р	Measurements And Control Systems	0	0	2	1
		Laboratory	0	0	2	1
15EC204J	Р	Linear Integrated Circuits	3	0	2	4
15EE213	Р	Generation, Transmission And Distribution	3	0	0	3
		Department Elective - I	3	0	0	3
		TOTAL	22	1	7	26
		TOTAL CREDITS		2	6	

		LEVEL 3 SEMESTER I				
Course Code	Category	Course Name	L	Т	Р	С
15PD301	В	Communication & Reasoning Skills	1	1	0	1
15MA302	В	Discrete Mathematics	4	0	0	4
15EE301J	Р	Power Electronics	3	0	2	4
15EE302	Р	Power System Protection	3	0	0	3
15EE303	Р	Discrete Transforms And Signal Processing	3	0	0	3
	Р	Department Elective II	3	0	0	3
	Р	Open Elective I	3	0	0	3
15EE375L/	Р	Minor Project I/				
15EE380L/		Seminar I/	0	0	3	2
15EE385L/		Massive Open Online Courses (MOOCs) I/	0	0	5	2
15EE490L		Industry Module I				
15EE390L	Р	Industrial Training I (to be undergone at the end of	0	0	3	2
		II year)	0	0	5	2
		TOTAL	20	1	8	25
		TOTAL CREDITS		2	25	

		LEVEL 3 SEMESTER II					
Course Code	Category	Course Name	L	Т	Р	С	
15PD302	В	Quantitative Aptitude And Logical Reasoning – II	1	1	0	1	
15MA301	В	Probability And Stastistics	4	0	0	4	
15EE304	Р	Power System Analysis	3	0	0	3	
15EE305J	Р	Microcontrollers	3	0	2	4	
15EE306M	Р	Multi Disciplinary Design	2	2	0	3	
		Department Elective III	3	0	0	3	
		Department Elective IV	3	0	0	3	
		Open Elective II	3	0	0	3	
15EE376L/ 15EE381L/ 15EE386L/ 15EE491L	Р	Minor Project II/ Seminar II / Massive Open Online Courses (MOOCs) II/ Industry Module II	0	0	3	2	
	TOTAL					26	
		TOTAL CREDITS		26			

LEVEL 4 SEMESTER I								
Course Code	Category	Course Name	L	Т	Р	С		
15EE401	Р	Solid State Drives	3	0	0	3		
15EE401L	Р	Electric Drives Laboratory	0	0	3	2		
15EE402	Р	Power System Operation And Control	3	0	0	3		
15EE403L	Р	Power System Laboratory	0	0	3	2		
		Department Elective V	3	0	0	3		
		Department Elective VI	3	0	0	3		
		TOTAL	12	0	6	16		
		TOTAL CREDITS		1	.6			

LEVEL 4 SEMESTER II								
Course Code	Category	Course Name	L	Т	Р	С		
15EE496L	Р	Major Project /Practice School	0	0	24	12		
	TOTAL			0	24	12		
TOTAL CREDITS			12					

	LEVEL 2 ELECTIVE							
	DEPARTMENT ELECTIVE I							
Course Code	Category	Course Name	L	Т	Р	С		
15EE254E	Р	Instrumentation Systems	3	0	0	3		
15BM324E	Р	Principles of Biomedical Instrumentation	3	0	0	3		
15EC226E	Р	Sensors And Transducers	3	0	0	3		
15EE251E	Р	Sustainable Energy	3	0	0	3		
15EE252E	Р	Electrical Power Utilization And Illumination	3	0	0	3		
15EE253E	Р	Advanced Topics In Electrical Insulation	3	0	0	3		
15SE251E	Р	Principles of Object Oriented Programming	3	0	0	3		

LEVEL 3 ELECTIVE							
DEPARTMENT	FELECTIVE I	I / DEPARTMENT ELECTIVE III / DEPARTM	ENT I	ELECT	IVE 1	V	
Course Code	Category	Course Name	L	Т	Р	С	
15EE354E	Р	Special Electrical Machines	3	0	0	3	
15EE365E	Р	Modeling And Analysis Of Electrical Machines	3	0	0	3	
15EE367E	Р	Design Of Electrical Machines	3	0	0	3	
15EE352E	Р	Advanced Control Theory	3	0	0	3	
15EC252	Р	Principles Of Communication Systems	3	0	0	3	
15EE356E	Р	Photonics	3	0	0	3	
15EE358E	Р	Advanced CMOS Devices And Technology	3	0	0	3	
15EE363E	Р	Power Converter Analysis And Design	3	0	0	3	
15EE357E	Р	Power System Harmonics		0	0	3	
15EE359E	Р	Industrial Power Systems	3	0	0	3	
15EE355E	Р	HVDC And EHVAC Systems	3	0	0	3	
15EE361E	Р	Flexible Ac Transmission Systems	3	0	0	3	
15EE362E	Р	High Voltage Engineering	3	0	0	3	
15EE351E	Р	Power Quality	3	0	0	3	
15EE353E	Р	Modern Optimization Techniques	3	0	0	3	
15CS251E	Р	Introduction to Data Structures	3	0	0	3	
15CS203	Р	Computer System Architecture	3	0	0	3	
15CS322	Р	Neuro Fuzzy And Genetic Programming	3	0	0	3	
15CS401	Р	Artificial Intelligence	3	0	0	3	
15IT371E	Р	Computer Networking	3	0	0	3	

	LEVEL 4 ELECTIVE							
	DEPARTME	NT ELECTIVE V & DEPARTMENT ELECTIVE	E VI					
Course Code	Category	Course Name	L	Т	Р	С		
15EE458E	Р	Finite Element Analysis For Electrical Machines	3	0	0	3		
15EE457E	Р	Hybrid Electric Vehicles	3	0	0	3		
15MH301	Р	Fundamendals of Robotics	3	0	0	3		
15EE463E	Р	Embedded Systems	3	0	0	3		
15EE461E	Р	Robust Control Systems	3	0	0	3		
15EE459E	Р	Solar Photovoltaic Systems	3	0	0	3		
15EE454E	Р	Distributed Energy Resources	3	0	0	3		
15EE462E	Р	Switched Mode Power Conversion	3	0	0	3		
15EC352E	Р	Introduction To VLSI Design	3	0	0	3		
15MH322E	Р	Micro Electro Mechanical Systems	3	0	0	3		
15BM421E	Р	Medical Electronics	3	0	0	3		
15EE451E	Р	Power System Dynamics	3	0	0	3		
15EE452E	Р	Modern Power System Analysis	3	0	0	3		
15EE453E	Р	Power System Deregulation	3	0	0	3		
15EE455E	Р	Smart Grid	3	0	0	3		
15EE456E	Р	Energy Management System And SCADA	3	0	0	3		
15EE460E	Р	Vehicular Power Systems	3	0	0	3		
15IT470E	Р	Fundamentals of Big Data Analytics	3	0	0	3		
15IT370E	Р	Fundamentals of Cloud Computing	3	0	0	3		
15CS325E	Р	Digital Image Processing	3	0	0	3		

Level / Semester	No. of	Cumulative	Category			
	Credits	Credits	H/SS	В	Е	Р
Level 1 / Semester I	26	26	3	14	9	4
Level 1 / Semester II	23	49	4	9	6	-
Level 2 / Semester I	26	75	3	4	-	19
Level 2 / Semester II	26	100	3	4	-	19
Level 3 / Semester I	25	126	1	4	-	20
Level 3 / Semester II	26	152	1	4	-	21
Level 4 / Semester I	16	168	-	-	-	16
Level 4 / Semester II	12	180	-	-	-	12
Total		180	15	39	15	111

COURSES OFFERED TO OTHER DEPARTMENTS

Course Code	Department	Course Name		Т	Р	С
15EE232	CSE	Electrical Engineering And Control Systems	3	0	0	3
15EE231	E&I	Electrical Machines	3	0	0	3
15EE231L	E&I	Electrical Machines Laboratory	3	0	0	3
15EE234J	BME	Fundamentals of circuits And Networks	3	0	2	4

15EE101		Basic Electrical Engin	L 2	Т 0	P 0	C 2	
Co-requisite:	Nil						
Prerequisite:	Nil						
Data Book /	Nil						
Codes/Standards							
Course Category	Р	PROFESSIONAL CORE	CIRCUITS AND SYSTEMS	5			
Course designed by	Department of Electrical and Electronics Engineering						
Approval	32 ⁿ	^d , Academic Council Meeting, 2016					

PURP	PURPOSE This course provides comprehensive idea about circuit analysis, wo and common measuring instruments INSTRUCTIONAL OP DECTIVES S'						mach	ines
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOM					MES			
At the en	d of the course, the student will be able to							
	Understand the basic concepts of magnetic circuits, AC and DC circuits.	a	e					
2.	Gain knowledge about the working principle, construction, applications of DC, AC machines and measuring instruments.	а						
3.	Understand the fundamentals of wiring and earthing.	а						

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
1.	UNIT I: FUNDAMENTALS OF DC CIRCUITS	6			
2.	Introduction to DC and AC circuits, Active and passive two terminal elements	1	С	1	1
3.	Ohms law, Voltage-Current relations for resistor, inductor, capacitor	1	С	1	1
4.	Kirchhoff's laws, Mesh analysis	2	С	1	1
5.	Nodal analysis	1	С	1	1
6.	Ideal sources –equivalent resistor, current division, voltage division	1	С	1	1
	UNIT II : MAGNETIC CIRCUITS	6			
7.	Introduction to magnetic circuits	1	С	1	1
8.	Simple magnetic circuits	2	С	1	1
9.	Faraday's laws	2	С	1	1
10.	Induced emf and inductances	1	С	1	1
	UNIT III : AC CIRCUITS	6			
11.	Sinusoids, Generation of AC, Average and RMS values, Form and peak factors	2	С	1	1
12.	Concept of phasor representation, J operator	1	С	1	1
13.	Analysis of R-L, R-C, R-L-C circuits	2	С	1	1
14.	Introduction to three phase systems - types of connections, relationship between line and phase values	1	С	1	1
	UNIT IV : ELECTRICAL MACHINES & MEASURING INSTRUMENTS	6			
15.	Working principle, construction and applications of DC machines	2	С	2	1
16.	Working principle, construction and applications of AC machines (1 - phase transformers, single phase induction motors: split phase, capacitor start and capacitor start and run motors)	2	С	2	1
17.	Basic principles and classification of instruments - Moving coil and moving iron instruments.	2	С	2	1
	UNIT V : ELECTRICAL SAFETY, WIRING AND INTRODUCTION TO POWER SYSTEM	6			
18.	Safety measures in electrical system- types of wiring	1	С	3	1
19.	Wiring accessories-staircase, fluorescent lamps and corridor wiring	2	С	3	1

20.	Basic principles of earthing-Types of earthing- Simple layout of generation, transmission and distribution of power	3	С	3	1
	Total contact hours	30			

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Dash.S.S, Subramani.C, Vijayakumar.K, "Basic Electrical Engineering", First edition, Vijay Nicole Imprints
	Pvt.Ltd,2013
REFERI	ENCE BOOKS/OTHER READING MATERIAL
2.	Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second edition, PHI Learning,
	2007
3.	Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth edition, Chand. S & Co, 2012
4.	Kothari.D.P and Nagrath.I.J, "Basic Electrical Engineering", Second edition, Tata McGraw - Hill, 2009
5.	Bhattacharya.S.K, "Basic Electrical and Electronics Engineering", First edition, Pearson Education, 2011.

Course nature Theory								
Assessment Method (Weightage 100%)								
In-semester	Assessment tool	Cycle test I	Cycle test	Cycle Test	Surprise Test	Quiz	Total	
		-	П	III	-			
	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	

15EE102L		Electrical Engineering Practices				Т	Р	С
					0	0	2	1
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book /	NIL							
Codes/Standards								
Course Category	Р	PROFESSIONAL CORE	CIRCUITS	AND S	YSTE	MS		
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32 nd /	32 nd Academic Council Meeting, 2016						

P	PURPOSE To provide exposure to the students with hands on experience on various electrical engineering								
		practices.							
INS	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At t	he end of th	ne course, the student will be able to							
		esidential wiring and various types of wiring.	a						
2.	Measure th	ne various electrical quantities.	a	b					
3.	Gain know	ledge about the fundamentals of various electrical gadgets,							
	their worki	ng and trouble shooting.	а						
4.	Design a p	rototype of a transformer.	а		с				
5.	Know the	necessity and types of earthing and measurement of earth	a b						
	resistance.		a	U					

Sl. No.	Description of experiments	Contact hours	C-D-I-O	IOs	Reference
1.	Residential wiring (using Energy meter, fuses,	2	D,I,O	1	1,2,3
	switches, indicator, lamps, etc)				
2.	Types of wiring (fluorescent lamp wiring,	2	D,I,O	1	1,2
	staircase wiring, godown wiring, etc)				
3.	Measurement of electrical quantities (like	2	D,I	2	1,2
	voltage, current, power, power factor in RLC				
	circuits)				
4.	Measurement of energy (using single-phase and	2	D,I	2	1,3
	three-phase energy meter)				
5.	Study of Earthing and Measurement of Earth	2	С	5	1
	resistance.				
6.	Study of trouble shooting of electrical	2	С	3	1
	equipment (fan, iron box, mixer and grinder,				
	etc)				
7.	Study of various electrical gadgets (Induction	2	С	3	1
	motor, transformer, CFL, LED, PV cell, etc)				
8.	Assembly of choke or small transformer.	2	D,I,O	4	1,2
	Total contact hours			30	

LEARNI	NG RESOURCES
Sl. No.	REFERENCES
1.	Subhransu Sekhar Dash & K.Vijayakumar, "Electrical Engineering Practice Lab Manual". Vijay Nicole
	Imprints Private Ltd., First Edition, 2013.
2.	Jeyachandran.K, Natarajan.S and Balasubramanian.S, " A Primer on engineering practices laboratory",
	Anuradha Publications, 2007.
3.	Jeyapoovan.T, Saravanapandian.M and Pranitha.S, "Engineering practices lab manual", Vikas Publishing
	House Pvt., Ltd., 2006.

Course nature Practical							
Assessment Method (Weightage 100%)							
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva	Model	Total	
				Voce	examination		
	Weightage	40%	5%	5%	10%	60%	
End semester examination Weightage :							

15EE103	Analysis of Electric Circuits	L T P C 3 0 0 3				
Co-requisite:	NIL					
Prerequisite:	15EE101					
Data Book / Codes/Standards	NIL					
Course Category	P PROFESSIONAL CORE CIRCUIT	TS AND SYSTEMS				
Course designed by	Department of Electrical and Electronics Engineering					
Approval	32 nd Academic Council Meeting, 2016					

P		To enrich the students on the basics of circuit analys circuits, transient analysis and synthesis of electrical ne			theor	ems,	conce	epts o	f AC
INSTE	RUCTIONAL	OBJECTIVES		STUD	ENT	OUI	CON	1ES	
At the	end of the cour	se, the student will be able to							
1.		ne circuit parameters, sources, analysis of circuits using							
		and Nodal voltage methods, network reduction, source n and star –delta transformation.	а	e					
2.		ge on the solution methods of AC circuits including allel resonance	а	e					
3.	Get an insight theorems.	t into solution of DC and AC circuits using network	а	e					
4.	Get an insight without source	t into the transient analysis of RLC circuits with and e.	а	e					
5.	Gain knowled and network	ge on 3-phase circuits, coupled circuits, tuned circuits graphs.	a	e					

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference			
	UNIT I: ANALYSIS OF DC CIRCUITS	9						
1.	Introduction to DC circuits	2	С	1	1-4			
2.	Mesh analysis; Presence of dependent	2	С	1	1-4			
Ζ.	sources; circuits with current sources	2	C	1	1-4			
3.	Node analysis; presence of dependent	2	C	C	C	С	1	1-4
5.	sources, circuits with voltage sources	2	C	1	1-4			
4.	Network reduction; source transformation;	3	С	1	1-4			
т.	star-delta transformation	_	C	1	1-4			
	UNIT II: ANALYSIS OF AC CIRCUITS	9						
5.	Introduction to AC circuit; phasors;	2	С	2	1-4			
5.	Impedance and admittance	2	C	2	1 +			
6.	Steady state analysis of RL, RC and RLC	3	С	2	1-4			
	circuits; power and power factor							
7.	Series and Parallel resonance	2	С	2	1,2			
	Mesh impedance matrix and node admittance							
8.	matrix; solving AC circuits using mesh and	2	С	2	1,2			
	node analysis							
	UNIT III: NETWORK THEOREMS	9						
9.	Use of superposition theorem and thevenin's	3	С	3	1-4			
).	theorem in solving DC and AC circuits	5	C	5	11			
	Application of Norton's theorem, Maximum		C 3					
10.	power transfer theorem in solving DC and	3		1-4				
	AC circuits.							
	Application of Millman's theorem and							
11.	Reciprocity theorem in solving DC and AC	3	С	C 3	1-4			
	circuits.							
	UNIT IV: TRANSIENT ANALYSIS	9						
	Introduction; Exponentially increasing and							
12.	decreasing functions; time constant; RC and	3	3 C 4	3 C 4	3 C 4	3 C 4	1-4	
	RL source free and driven circuits;							
13.	Transients in RC, RL and RLC circuit with	3	С	4	1-4			
10.	DC excitation	5	C	т	1 7			
14.	Laplace transforms; Transform impedance;	3	С	4	1-4			
11.	Circuit transients using Laplace transform	5	C		11			

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT V: THREE PHASE CIRCUITS, TUNED CIRCUITS AND GRAPH THEORY	9			
15.	Analysis of balanced three-phase circuits and simple unbalanced three-phase circuits	2	С	5	1,2
16.	Two-wattmeter method of measuring three- phase power	2	С	5	1,2
17.	Analysis of coupled and tuned circuits	2	С	5	1,2
18.	Graph of a network; Trees, chords and branches; Tie-set and cut-set of a graph	3	С	5	1,2
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1.	Jegatheesan. R, "Analysis of Electric Circuits", McGraw Hill Education (India), 2014.
2.	Sudhakar.A and Shyam Mohan.S.P, "Circuits and Networks Analysis and Synthesis", Tata McGraw Hill
Ζ.	Publishing Company Ltd., New Delhi, 4th edition, 2010.
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	Sukhija and Nagsarkar, "Circuits and Networks", Oxford University Press, Second edition, 2016
4.	William H Hayt, J E Kemmerly and Steven M Durbin, "Engineering Circuit Analysis", McGraw Hill, 7th
4.	Edition, 2007.
5	Charles K. Alexander and Matthew N. Q. Sadiku, "Fundamentals of Electric Circuits", McGraw-Hill
5.	International Edition, 3 rd Edition, 2007.

Course nature				Theory				
Assessment M	ethod (Weightage 1	100%)						
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
	Weightage	10%	15%	15%	5%	5%	50%	
	End semester examination Weightage : 5							

15EE103L		Electric Circuit Laboratory					P 2	C 1
Co-requisite:	15EE	103						
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	Р	PROFESSIONAL CORE	CIRCUITS	AND S	YSTE	EMS		
Course designed by	Depa	rtment of Electrical and Electron	nics Engineering					
Approval	32 nd	Academic Council Meeting, 20)16					

PURPOSE This laboratory course will give the student a thorough knowledge about the basics of circl analysis.					ircuit			
INSTRU	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMI							
At the en	d of the course, student will be able to							
1.	Understand and gain knowledge about circuit laws and theorems.	а	b	e				
2.	Gain knowledge about time domain analysis of circuit transients.	а	b	e				
3. Understand the concept of resonance in series and parallel circuits.		а	b	e				
4.	Learn how to use the PSpice software for simulating circuits.	а	b	e	k			

Sl. No.	Description of experiments	Contact hours	C-D-I-O	IOs	Reference
1.	Verification of Kirchhoff's laws	4	D,I,O	1, 4	1, 2, 3,4
2.	Verification of Thevenin's and Norton's Theorem	6	D,I,O	1, 4	1, 2, 3,4
3.	Verification of Superposition and Reciprocity theorem	4	D,I,O	1, 4	1, 2, 3,4
4.	Verification of Maximum Power Transfer theorem	4	D,I,O	1, 4	1, 2, 3,4
5.	Time Domain analysis of RL, RC transient circuits	4	D,I,O	2, 4	1, 2, 3,4
6.	Series Resonance Circuit	4	D,I,O	3, 4	1, 2, 3,4
7.	Parallel Resonance Circuit	4	D,I,O	3, 4	1, 2, 3,4
Note: All	the above experiments can be realized in simulat	ion and hardwa	are environm	ent.	
	Total contact hours			30	

	NO MEDOCICED
Sl. No.	REFERENCES
1.	Department Lab Manual
2.	R.Jegatheesan, "Analyais of Electric Circuits", McGraw Hill Education (India) Edition 2015.
3.	Sudhakar.A and Shyam Mohan.S.P, "Circuits and Networks Analysis and Synthesis", Tata McGraw Hill
	Publishing Company Ltd., New Delhi, Fourth edition, 2010.
4.	Muhammed H Rashid, "SPICE for circuits and electronics using PSPICE", PHI, 2 nd edition, 2011

Course natur	e			Practical					
Assessment N	Method (Weighta	ge 100%)							
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total			
	Weightage	40%	5%	5%	10%	60%			
	End semester examination Weightage :								

15EE204	Electrical M	Electrical Machines -I						
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	P PROFESSIONAL CORE	ELECTRICAL MA	CHINES	•				
Course designed by	Department of Electrical and Electro	nics Engineering						
Approval	32 NDAcademic Council Meeting 201	16						

P	PURPOSE To acquire fair knowledge on the working of various DC machines & Transformers.									
INS	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOM							5		
At the end of the course, student will be able to										
1.	Model and Analyze the performance of different types of DC machines	а	e							
2.	Learn the applications of DC generators	а	e							
3.	Analyze the performance of different types of DC motors	а	e							
4.	Analyze the performance of different types of Transformer	а	e							
5.	Familiarize with the applications of DC machines and transformer	а		h						

Session	1 1	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: DC GENERATOR	10			
1.	Electromechanical energy conversion concept	1	С	1	1,2
2.	Single and multiple excited systems	1	C,D	1	1,2
3.	Torque and force equations	1	С	1	1,2
4.	Introduction – electric generator- Constructional features- Principle of operation of DC generator	1	С	1	1,2
5.	EMF equation-circuit model - methods of excitation	1	С	1	1,2,3
6.	Losses in DC generator –power stages –condition for maximum efficiency	1	C	2	1,3
7.	armature reaction – compensating winding, commutation	2	C,D	2	1,2
8.	Operating Characteristics of DC generators	1	C,D	2	1,5
9.	Parallel operation of DC generators, Applications of DC generators	1	C,D	2	1,2
	UNIT II : DC MOTORS	09			
10.	Principle of operation of DC motors	1	С	3	1.2
11.	Back EMF	1	С	3	1,5
12.	Torque equation-quantitative analysis	2	С	3	2,5,6
13.	Types of DC motors - characteristics of DC motors	2	С	3	1,2
14.	Starting of DC motors: review of mechanical starter, electronic soft starters for DC motor with energy saving.	1	C	3	1,3
15.	Speed control: Field control, Armature control, voltage control, Thyristor control – efficiency	2	С	3	1,2
	UNIT III :TRANSFORMERS	10			
16.	Construction - principle of operation – transformer on no load	1	C	4	1,2
17.	Ideal transformer – equivalent circuit – phasor diagram – transformer losses	2	C	4	1,3
18.	Efficiency and voltage regulation-all day efficiency- per unit representation	2	C,D	4	1,2
19.	Three phase transformers -connections - Scott Connection - Phasing of transformer- parallel operation of three phase transformers	2	С	4	1,5
20.	Auto transformer - tap changing transformers- tertiary winding.	1	C	4	1,2
21.	Variable frequency transformer – audio frequency transformer	1	C	4	1
22.	Grounding transformer – welding transformer	1	С	4	1

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT IV : TESTING OF DC MACHINES & TRANSFORMERS	09			
23.	Losses and efficiency –Condition for maximum efficiency	2	C	5	1,2
24.	Testing of DC machines: Brake test, Swinburne's test,	2	С	5	1,2
25.	Retardation test, Hopkinson's test, Testing of transformer: polarity test, load test,	2	C,D	5	2,3
26.	Open circuit and short circuit test	1	C,D,	5	4,5
27.	Sumpner's test – All day efficiency.	2	C	5	1,2
	UNIT V : MODELING OF DC MACHINES	07			
28.	Basic two pole DC machine-analysis of DC machine using Primitive two axis machine equation	2	C,D	1	3,4
29.	Voltage and current relationship -torque equations	1	C,D	1	3,4
30.	Mathematical model of separately excited DC motor and Dc series motor in state variable form - transfer function	2	C,D	1	3,4
31.	Mathematical model of DC shunt motor and DC compound motor in state variable form - transfer function	2	C,D	1	3,4
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1.	Nagrath I. J and Kothari D. P. "Electric Machines", Tata McGraw Hill Publishing Company Ltd, 4th Edition,
	2010.
2.	Dr. Murugesh Kumar K. "DC Machines and Transformers", Vikas Publishing House Pvt Ltd., 2010.
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	Fitzgerald. A.E., Charles Kingsely Jr, Stephen D.Umans, ' <i>Electric Machinery</i> '', 6 th edition, Tata McGraw
	Hill Books Company, 2006.
4.	P.S. Bimbhra, "Electrical Machinery", Khanna Publishers, 7th edition paper back, 2011.
5.	S.Sarma & K.Pathak "Electric Machines", Cengage Learning India (P) Ltd., Delhi, 2011.
6.	Syed A. Nasar, "Electric Machines and Power Systems: Volume I", Mcgraw-Hill College; International
	Edition, 2014.

Course natur	·e			Theory			
Assessment 1	Method (Weightag	e 100%)					
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

٦

15EE204L		Electrical Machines Laboratory – I	I	L 0	Т 0	Р 3	C 2
Co-requisite:	15EE20	04					
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	P	PROFESSIONAL CORE E	ELECTRICA L	MA	CHIN	ES	
Course designed by	Depart	Department of Electrical and Electronics Engineering					
Approval	32nd A	cademic Council Meeting 2016					

Р	PURPOSE To acquire fair knowledge on the working of various DC machines and Transformers.								
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						3			
At the	At the end of the course, student will be able to								
1.	Rig up circuit	s for testing a given Electrical machine.	а	b	e				
2.	2. Obtain the performance characteristics of Electrical machines.		а	b	e				
3.	3. Simulate the circuits of DC machines.								

Sl. No.	Description of experiments	Contact hours	C-D- I-O	IOs	Reference
1.	Load test on DC motors (shunt, series, compound) using OPEN LAB SYS	6	I,O	1	1,2
2.	Speed Control of DC Motor: Field control, Armature control, Thyristorised control		I,O	1	1,2
3.	Load test on DC generators.	3	I,O	2	1,2
4.	Load test on single-phase and three phase-transformers	3	I,O	2	1,2
5.	Open circuit and Short circuit tests on single-phase transformer	3	I,O	2	1,2
6.	Open circuit and load characteristics of DC generator (Self and Separately Excited)	3	I,O	2	1,2
7.	Swinburne's test and separation of losses in DC Machine.	3	I,O	1	1,2
8.	Hopkinson's test	3	I,O	1	1,2
9.	Sumpner's test on single-phase transformers	3	I,O	1	1,2
10.	Three-phase transformer connections	3	I,O	1	1,2
11.	Three-phase to two-phase conversion of transformer	3	I,O	1	1,2
12.	Testing of DC machines by using OPEN LAB SYS	3	I,O	1	1,2
13.	DC motor speed control using MATLAB/SIMULINK	3	I,O	3	1,2
14.	Transfer function of DC machine.	3	I,O	3	1,2
	Total contact hours		4	5	

LEARN	ING RESOURCES
Sl. No.	REFERENCES
7.	Laboratory Manual
8.	Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing CoLtd., New Delhi, 4th edition 2010.

Course nature				Practical			
		Assessment Metho	d (Weightag	e 100%)			
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Vi va Voce	Model examination	Total	
	Weightage	40%	5%	5%	10%	60%	
	End semester examination Weightage : 40						

15EE205	Electromagnet	ElectromagneticTheoryLTP300						
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	P PROFESSIONAL CORE	CIRCUITS AND	SYSTEMS					
Course designed by	Department of Electrical and Electronics Engineering							
Approval	32 nd Academic Council Meeting 2016	õ						

P	PURPOSE To acquire fair knowledge about the theoretical concepts and problems in Electromagnetic Fields							
INS	TRUCTIONAL OBJECTIVES	S 1	UDE	NT (OUT	COI	ME	S
At t	At the end of the course, student will be able to							
1.	Understand the concepts of Electrostatics and their applications	а	e					
2.	2. Familiarize with the concepts of Magnetostatics and their applications							
3.	Learn the concept of Electromagnetic Fields, waves and wave propagation.	а	e	h				

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: BASIC CONCEPTS OF FIELD THEORY	8			
1.	Introduction to various Co-ordinate Systems- Sources and effects of electromagnetic fields.	1	C	1	1,2,3,4
2.	Divergence theorem-Strokes theorem- Field theory and circuit theory comparison- Electric field intensity	2	С	1	1,2,3,4
3.	Electric fields due to point, line, surface and volume charge distributions – Electric flux density-Coulomb's law	2	С	2	1,2,3,4
4.	Introduction to magnetic circuits – Magnetically induced EMF and Mechanical force, torque calculations	2	С	2	1,2,3,4
5.	Magnetic field in a rotating machine-generated voltage –induced EMF	1	C	2	1,2,4,3
	UNIT II: ELECTROSTATICS APPLICATIONS	9			
6.	Gauss's law and its applications – Electric potential – potential gradient	2	C	1	1,2,3,4
7.	Electric field in free space, conductors, dielectric -Dielectric polarization	2	C	1	1,2,3,4
8.	Dielectric strength - Electric field in multiple dielectrics	1	C	1	1,2,3,4
9.	Boundary conditions, Poisson's and Laplace's equations	2	C	1	1,2,3,4
10.	Determination of Capacitance- Energy density problems.	1	C,D	1	1,2,3,4
11.	Methods of images, graphical field mapping	1	С	1	1,2,3,4
	UNIT III: MAGNETOS TATICS APPLICATIONS	10			
12.	Magnetic field due to straight conductors, circular loop, infinite sheet of current using Ampere and Bio-Savart law	2	C,D	2	1,2,3,4
13.	Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization	2	C	2	1,2,3,4
14.	Magnetic field in multiple media – Boundary conditions	2	C	2	1,2,3,4
15.	Scalar and vector potential –Design of Inductance – Energy density	2	C,D	2	1,2,3,4
16.	Application of magnetic circuits –. Energy in magnetic systems	2	С	2	7

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference			
	UNIT IV: TIME VARYING ELECTRIC AND MAGNETIC FIELD FIELDS	8						
17.	Faraday's laws – Transformer and motional EMF-continuity current equation–Displacement current-conduction current	2	С	1	1,2,3,4,5			
18.	Energy in quasi-stationary Electromagnetic Fields	2	C	1,2	1,2,3,4,5			
19.	Maxwell's equations (differential, integral forms and sinusoidal variation of field with time)	2	C,D	1,2	1,2,3,4,5			
20.	Potential for time varying fields, flow of power in electromagnetic field-Poynting vector	2	С	1	1,2,3,4,5			
	UNIT V: ELECTROMAGNETIC WAVES	10						
21.	Electro Magnetic Wave equations – Wave parameters- velocity, intrinsic impedance- quantitative analysis propagation constant	1	С	3	1,2,3,4,5			
22.	Electromagnetic Wave equation for free space, lossy and lossless dielectrics	2	C	3	1,2,3,4,5			
23.	Wave equation for conductors-skin depth	2	С	3	1,2,3,4,5			
24.	Plane wave reflection and refraction –incidence of plane wave at the boundary between two region ratio	2	С	3	1,2,3,4,5			
25.	Input impedances – Standing wave–critical angle of incidence-Brewster angle	2	С	3	1,2,3,4,5			
26.	Applications of electromagnetic waves- Introduction of bioelectromagnetics	1	С	3	6,3			
	Total contact hours			45				

LEARNING	RESOURCES
Sl. No.	TEXT BOOKS
1.	William Hayt, "Engineering Electromagnetics", McGraw Hill, New York, 7th edition, 2014.
2.	Matthew. N.O. Sadiku, "Elements of Electromagnetics", Fourth Edition, Oxford University Press, 1st
	Indian Edition, 2010.
REFERENCI	E BOOKS/OTHER READING MATERIAL
3.	Ashutosh Pramanik, "Electromagnetism - Theory and Applications", Prentice-Hall of India Private
	Limited, New Delhi, 2006.
4.	Gangadhar.K.A, "Field theory", Khanna Publishers, New Delhi, 15th edition, 2010.
5.	S C Mahapatra, "Principles Of Electromagnetics", McGraw Hill education private limited, 2011.
6.	John D. Kraus, "Electromagnetics with application" McGraw Hill, 5th edition, 2011.
7.	Kothari D.P and Nagrath .I. J," Electrical machines", Tata McGraw Hill Publishing Co. Ltd, New Delhi,
	5 th edition, 2002

Course natur	e			Theory			
Assessment N	Method (Weightag	e 100%)					
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE206		Digital System Design	Digital System Design					
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	Р	PROFESSIONAL CORE	ELECTRONICS					
Course designed by	Dep	Department of Electrical and Electronics Engineering						
Approval	32nd	2 nd , Academic Council Meeting, 2016						

 PURPOSE
 To acquire an in-depth knowledge on Digital logic families, Combinational circuits and able to design and analyze sequential circuits.

INSTRUCTIONAL OBJECTIVES STUDENT			NT C	OUTC	COMES			
At t	At the end of the course, the student will be able to							
1.	Understand the concepts of digital logic circuits.	а						
2.	Design combinational and sequential logic circuits.	а	с	e	h	j		
3.	Learn the concepts of Memory devices, VHDL	a	h	j	k			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS	10			
1.	Boolean algebra: De-Morgan's theorem – switching functions	1	С	1	1,2
2.	Simplification of switching function using K maps	2	C,D	1,2	1,3
3.	Quine Mc-Cluskey method	2	C,D	1,2	1,3
4.	Design of adders, subtractors and comparators	1	C,D	1,2	1,2
5.	Design of code converters	2	C,D	2	2,9
6.	Encoders, decoders, multiplexers and de-multiplexers.	2	C,D	1,2	2,9
	UNIT II: SYNCHRONOUS SEQUENTIAL CIRCUITS	9			
7.	Flip flops - SR, D, JK and T	1	С	2	1,3,6
8.	Analysis of synchronous sequential circuits	2	C,D	2	1,3,7
9.	Design of synchronous sequential circuits	2	C,D	2	1,3
10.	Counters: Synchronous and Asynchronous	2	C,D,I	2	2,3,7
11.	State diagram-state reduction – state assignment	2	C,D	2	1,3
	UNIT III: ASYNCHRONOUS SEQUENCTIAL CIRCUIT	8			
12.	Analysis of asynchronous sequential machines	3	C,	2	2,3
13.	State reduction – state assignment	2	C,D	2	2,3
14.	Asynchronous design problem	3	D	2	2,3
	UNIT IV: PROGRAMMABLE LOGIC DEVICES, MEMORY AND LOGIC FAMILIES	9			
15.	Memories: ROM ,PROM ,EPROM	1	С	3	1
16.	Programmable Logic Devices(PLD) :Programmable Logic Array(PLA), Programmable Array Logic(PAL)	3	C,D	3	2,5,6
17.	CPLD – FPGA	1	С	3	4,5,6
18.	Digital logic families: characteristics of Digital logic families	1	С	3	1,2
19.	TTL – ECL	2	С	3	1
20.	MOS families	1	С	3	1,2
	UNIT V: HDL AND RECENT TRENDS	9			
21.	RTL Design – combinational logic – Types – Operators	2	С	3	8
22.	Packages – Sequential circuit	2	С	3	8
23.	Sub-programs – Test benches.	2	С	3	8
24.	Example programs: adders, counters, flip-flops – FSM, Multiplexers / De-multiplexers, HDL code generation Techniques	3	D,I	3	8
	Total contact hours		4	15	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Morris. M. Mano and Michael.D.Ciletti, "Digital Design", Pearson Education, Fifth edition, 2013
2.	Floyd and Jain, "Digital Fundamentals", Pearson Education, Eleventh edition, 2015.
REFERE	ENCE BOOKS/OTHER READING MATERIAL
3.	John M.Yarbrough, "Digital Logic Application & Design", West Publishing Company, Thomson, First
	edition, 2002.
4.	Raj Kamal, "Digital systems-Principles and Design", Pearson education, Second edition, 2007
5.	Charles H.Roth, 'Fundamentals Logic Design', Jaico Publishing, Seventh edition, 2014.
6.	John F.Wakerly, "Digital Design Principles and Practice", Pearson Education, Third edition, 2006.
7.	Roger L.Tokheim,"Digital Electronics: Principles and Applications", Mc Graw Hill Education,8th
	edition,2014
8.	Bhasker.J, "A VHDL Primer" PHI Learning, Third edition, 2009.
9.	G K Kharate, " Digital Electronics", Oxford University Press India ,1st Edition, 2010,
10.	David J Comer, "Digital Logic and State Machine Design", Oxford University Press India, 3rd Edition, 2012,

Course natu	re	Theory	Theory								
Assessment	Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total				
semester	Weightage	10%	15%	15%	5%	5%	50%				
End semester examination Weightage : 50											

15EE207		Electrical And Electronics Me	asurements And	L	P	С		
1314207		Instrumentation	n	3	0	3		
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book /	NIL							
Codes/Standards	INIL							
Course Category	Р	PROFESSIONAL CORE	ELECTRICAL	MACHI	NES			
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32 nd	32 nd Academic Council Meeting 2016						

Р	PURPOSE To acquire fair knowledge on construction, working of measuring in devices					struments, bridges and display							
INS	STRUCTIC	NAL OBJECTIVES	ST	UDEN	ЛГ	OUT	CON	MES	5				
At	At the end of the course, student will be able to												
1.	1. Learn the various types of DC and AC brides												
2.	2. Understand the working of analog meters for power and energy measurements												
3.	Learn the	operation of different measuring and display devices	а										
4.	4. Comprehend the measurement of non-electrical quantities.		а										
5.	5. Understand the working of biomedical instruments and data acquisition system												

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I : MEASUREMENT OF R, L,C AND MEASURING INSTRUMENTS	7			
1	Functional elements of instrument –static characteristic	1	С	1	1,2
2	Dynamic characteristic and Errors in measurement,	1	С	1	1,2
3	Measurement of R, L, C using Bridge circuits	2	С	1	1,2
4	Principle of operation, construction, Torque equation of Dynamometer type instruments	1	C	1	1,2
5	Ratio type instruments	1	С	1	1,2
6	Thermocouple and Rectifier type instruments.	1	C	1	1,2
	UNIT II : MEASUREMENT OF POWER AND ENERGY	09			
7	Current Transformer, Potential Transformer	1	C	2	1,2
9	Principle of operation, construction, Torque equation of induction type single and three phase energy meter	2	С	2	1,2
10	DIGITAL Energy meter, Bi-directional power flow meter, Net metering, Power measurements at high frequency	1	С	2	1,2
11	Creeping adjustments, testing of energy meters, Calibration of energy meter using direct and phantom loading	2	C,D	2	1,2
12	Measurement of reactive power using wattmeter in single phase and poly phase circuits, VArh meter, laser power meter	2	C,D	2	1,2
13	Maximum demand indicator,	1	С	2	1,2
	UNIT III : MEAS UREMENT OF FREQUENCY, PHASE SEQUENCE AND DISPLAY DEVICES	9			
14	Frequency meters-Electrical resonance and Mechanical Resonance type-RFID reader	2	C	3	1,2
15	Principle of operation, construction, working of single phase and three phase power factor meter	2	С	3	1,2

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	Construction and working of synchroscope				
16	- Western type, Nalder-Lipman type-Phase	2	С	3	1,2
	sequence indicator				
17	Storage and display devices: Strip chart	1	С	3	1,2
	recorder- X-Y recorder				
18	LED, LCD, dot matrix display, data loggers	2	С	3	1,2
	UNIT IV : MEASUREMENT OF NON ELECTRICAL QUANTITIES	10			
19	Pressure measurement-Basic methods of	2	С	4	1
19	pressure measurements	2		4	1
20	Dead-weight gauges and manometers	1	С	4	1
21	Flow measurement- Flow visualization, velocity magnitude from pilot static tube.	2	С	4	1
22	Temperature measurements – Temperature standards -Bimetallic thermometers, Liquid in glass thermometers, Pressure thermometers	2	С	4	1
23	Motion measurement-Fundamentals standards - Potentiometer displacement transducer	2	С	4	1
24	Differential transformers, Tachometer Encoder-Laser based methods	1	C	4	1
	UNIT V: BIOMEDICAL MEASUREMENTS AND DATA ACQUISITION SYSTEM	10			
25	Over view of biomedical measurements	1	С	5	1-5
26	Sources of bio electric potentials, Electrodes	1	C	5	1-5
27	Electrocardiogram, Electrocardiograph	1	С	5	1,2,5
28	Measurement of blood pressure-direct methods, Pacemakers X ray instrumentation	2	C,D	5	1,2,4,5
29	Block diagram of data acquisition system	1	C,D	5	1,2,4,5
30	Signal conditioning, Telemetry	1	C,D	5	1,2,4,5
31	Interfacing instruments – GPIB, USB	2	С	5	1,2,4,5
32	Power quality analyzer	1	С	5	1,2,4,5
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1.	Ernest O Doebelin and Dhanesh N Manik," Measurements systems Application and design", McGraw Hill
	publication, 5th edition, 2015.
2.	Sawhney A.K, "A course in Electrical and electronic Measurement and Instrumentation", Dhanpat Rai &
	Sons, New Delhi, 2008
REFER	ENCE BOOKS/OTHER READING MATERIAL
3.	Stout MB, "Basic Electrical Measurements", Prentice Hall of India Pvt Ltd., 2007.
4.	Rajendra Prasad, "Electrical Measurements & Measuring instruments", Khanna Publishers, 4th Edition,
	2010.
5.	Albert D Halfride & William D Cooper, "Modern Electronic instrumentation and measurement
	techniques", Prentice Hall of India Pvt Ltd., 2007

Course nature	Course nature Theory								
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage : 50									

15EE208		Electron Devices And Circ	uite	L	Р	С		
15E208		Electron Devices And Circo	uits	3	3			
Co-requisite:	NIL		·					
Prerequisite:	15EC	C101						
Data Book /	NIL							
Codes/Standards	INIL							
Course Category	Р	PROFESSIONAL CORE	ELECTRONICS					
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32nd /	2 nd Academic Council Meeting, 2016						

PURF	PURPOSE To familiarize the students with the design, analyze and application of electronic devices.													
INST	RUCTIONAL OBJECTIVES.	S	STUDE	NT (DUTC	UTCOMES								
At the	end of the course, the student will be able to													
1.	1. Familiarize with the electronic devices and its applications.													
2.														
3.	Gain knowledge about the design and analysis of multi-vibrators, oscillators and wave shaping circuits	а												

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: SEMICONDUCTOR DEVICES AND ITS APPLICATIONS	8			
1.	Construction and Characteristics of DIAC, TRIAC, GTO, HEMT	2	C	1	1,7
2.	LED, LCD characteristics, Tunnel diode, Schottky diode.	2	C	1	3,4
3.	MOS as a charge transferring device-CCD,BBD	1	С	1	2
4.	Analysis and Performance of L, C, LC,CLC filters ,series and shunt regulators	2	С	1	3
5.	Switched mode power supply	1	С	1	3
	UNIT II : SMALL SIGNAL ANALYSIS	10			
6.	Operating point of a BJT - Biasing circuits for BJT- Bias stability- Thermal runaway - Use of a heat sink	2	С	2	3
7.	JFET – Biasing a JFET and MOSFET	2	С	2	3
8.	CE,CB,CC amplifier, Hybrid model- Evaluation of H- parameters - Cascade – Darlington connection	2	C	2	3
9.	Small signal equivalent circuits-Miller's theorem- boot-strapping	2	C	2	4
10.	Small signal model – CS and CD amplifiers- problems	2	C	2	3
	UNIT III : LARGE SIGNAL AMPLIFIERS	9			
11.	Classification of large signal amplifiers, Distortion in amplifiers	1	C	2	6
12.	Frequency response of different coupling schemes	2	C	2	3,7
13.	Determining efficiency of Class A amplifiers, Class B amplifier, push-pull amplifier	2	C	2	3
14.	Class C-Single, Double-stagger tuned amplifiers-neutralization methods, Class D amplifier – Class S amplifier -	2	С	2	3
15.	MOSFET power amplifier -Differential amplifiers: DC and AC analysis-CMRR.	2	C	2	3,5
	UNIT IV : FEED BACK AMPLIFIERS AND OSCILLATORS	10			
16.	Feedback amplifiers – Barkhausen criterion- Stability –Distortion	2	C	2	2,7
17.	Current - Voltage, series / shunt feedback amplifiers	3	C	2	3,7,8
18.	Design and analysis of RC phase-shift oscillator.	1	C,D	3	3,4

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference	
19.	Design and analysis - Wien-bridge oscillator, Hartely oscillator.	2	C,D	3	3,4	
20.	Design and analysis of Colpitt's oscillator and Crystal oscillators.	1	С	3	3	
21.	Working - Franklin, Armstrong and Twin T oscillators.	1	С	3	3,4	
	UNIT V – WAVE SHAPING CIRCUITS	8				
22.	RC wave shaping circuits - Clampers and Clippers	1	C	3	3	
23.	RC, RL-Integrator and Differentiator circuits- Storage, Delay and Calculation of Transistor Switching Times	1	C	3	5	
24.	Speed-up Capacitor -Voltage Multiplier	1	С	3	5	
25.	Multivibrators – Astable, Monostable	2	С	3	3	
26.	Bistable - Analysis of performance parameters of multivibrators	1	С	3	3	
27.	Schmitt trigger -UJT relaxation oscillators- Blocking Oscillators	1	С	3	3	
28.	Time base circuits – Voltage-Time base circuit, Current-Time base circuit	1	С	3	3	
	Total contact hours	45				

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Jacob. Millman, Christos C.Halkias, "Electronic Devices and Circuits", Tata McGraw Hill Publishing
	Limited, New Delhi, 2010.
2.	Floyd, "Electronic Devices", Pearson Education Ltd", New Delhi, 2012
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	Sedha.R.S, "A Text Book of Applied Electronics", Sultan Chand Publishers, 2008.
4.	Theodre F.Bogart, Jeffrey S.Beasley, Guilermo Rico," Electronic Devices and Circuits", Pearson education
	ltd, New Delhi,2013
5.	Malvino, "Electronic Principles", Tata McGraw Hill, 6th edition, 2006.
6.	Boylestad & Nashelsky, "Electronic Devices and Circuit Theory", Prentice Hall of India (P) Ltd., Eighth
	edition, 2003.
7.	Gupta.J.B, "Electron Devices and Circuits"- S.K.Kataria & Sons, 2012
8.	David A Bell, "Electronic Devices and Circuits", 5th edition, 2008, Oxford University Press India

Course natu	re			Theory			
Assessment	Method (Weightag	ge 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE209L		Analog And Digital Circuits Laboratory					C 2
Co-requisite:	15EF	208,15EE206					
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL CORE	ELECTRONICS				
Course designed by	Depa	artment of Electrical and Electronics Engi	neering				
Approval	32nd	Academic Council Meeting, 2016					

PURI	POSE To acquire a fair knowledge on the performance characte digital logic circuits.	To acquire a fair knowledge on the performance characteristics of various electron devices and digital logic circuits.						and
INST	RUCTIONAL OBJECTIVES		STUD	DENT	OUT	CON	1ES	
At th	e end of the course, the student will be able to							
1.	Design circuits using discrete components.	а	b	с				
2.	Analyze the performance characteristics of electronic devices and their applications.	a	b	с	e			
3.	Design and analyze the frequency response of amplifiers.	а	b	с	e			
4.	Design combinational logic circuits using digital IC's.	а	b	с	e			

Sl. No.	Description of experiments	Contact hours	C-D-I-O	IOs	Reference
1.	Characteristics of BJT and FET	6	I,D,O	1,2	1,2
2.	PSpice simulation of BJT and FET characteristics	6	I,D,O	1,2	1,2
3.	Halfwave Rectifier, Full Wave rectifier, Clipper and Clampers.	6	I,O	1	1,2
4.	Design of Wien-bridge Oscillator and RC phase shift oscillator.	6	I,D,O	1	1,2
5.	Frequency response of voltage series feedback amplifier	3	I,O	3	1,2
6.	Adder, Subtractor and Flipflops	3	I,O	4	1,2
7.	Design of MUX and DEMUX	3	I,D,O	4	1,2
8.	Design of Counters	6	I,D,O	4	1,2
9.	Design of Digital logic circuits using VHDL	6	I,D,O	4	1,2
	Total contact hours	45			

 LEARNING RESOURCES

 Sl. No.
 REFERENCES

 1.
 Laboratory Manual

 2.
 Sedha.R.S, "A Text Book of Applied Electronics", Sultan Chand Publishers, 2008..

Course nature	9			Practical				
Assessment N	fethod (Weightage	100%)						
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total		
	Weightage	40%	5%	5%	10%	60%		
	End semester examination Weightage : 4							

15EE210	Electrical Mach	ines II L T P C 3 0 0 3
Co-requisite:	NIL	
Prerequisite:	NIL	
Data Book / Codes/Standards	NIL	
Course Category	P PROFESSIONAL CORE	ELECTRICAL MACHINES
Course designed by	Dept. of Electrical and Electronics Engin	neering
Approval	32 nd Academic Council Meeting, 2016	

PURPOSE To acquire knowledge about different types of AC machines								
INSTRU	CTIONAL OBJECTIVES	STUD	ENT	OUI	CON	AES		
At the er	d of the course, the student will be able to							
1.	Comprehend the construction, principle of operation, characteristics of three phase and single phase induction motor and their application.	a	e					
2.	Know the construction and performance of synchronous machines	а	e					
3.	Understand the construction and characteristics of special motors and their applications	а	h					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	References
	UNIT I: THREE PHASE INDUCTION MOTOR	9			
	Construction details of three-phase				
1	induction motor, Rotating magnetic field,	2	С	1	1,2
	principle of operation				
2	Slip, Effect of slip on rotor parameters	1	С	1	1,2
3	Torque equation, Torque-slip characteristics	1	С	1	1,2
4	Power Stages	2	С	1	1,2
5	Induction motor as generalized transformer- Equivalent circuit	2	С	1	1,2
6	No load and blocked rotor tests, Equivalent circuit	1	С	1	1,2
	UNIT II: STARTING, SPEED CONTROL AND PERFORMANCE CALCULATION FROM CIRCLE DIAGRAM	9			
7	Performance calculation from circle diagram	2	C,D	1	1,2
8	Need for starters–Starting methods of three- phase induction motor	1	C	1	1,2
9	Speed control of three-phase induction motor: Stator side, Rotor side	2	C	1	1,2
10	Slip power recovery schemes	1	С	1	1,2
11	Double cage rotor, Induction generator, Cogging, Crawling,	2	C	1	1,2
12	Electric Braking	1	C	1	1,2
	UNIT III: SINGLE-PHASE INDUCTION MOTOR AND SPECIAL	8			
	MOTORS				
13	Single-phase induction motor: Construction detail, Double revolving field theory, Torque equation, Torque-speed characteristics	1	C	1	1,2
14	Equivalent circuit, No load and Blocked rotor tests, Performance analysis	2	C	1	1,2
15	Methods of Self-starting-shaded pole induction motor	1	C	1	1,2
16	Construction, Principle of operation and applications of Linear Induction motor, Universal motor, stepper motor	2	С	3	2,3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	References
17	Construction, Principle of operation and applications of reluctance motor, repulsion motor, AC series Motor	2	C	3	2,3
	UNIT IV - SYNCHRONOUS GENERATORS	10			
18	Alternators: Construction features and types	1	С	2	1,2
19	EMF equation of alternators, armature reaction in alternators	1	C	2	1,2,6
20	Alternator on load, Synchronous reactance, Synchronous Impedance	1	C	2	1,2
21	Voltage regulation, Pre-determination of voltage regulation using EMF and MMF methods	2	C	2	1,2
22	Pre-determination of voltage regulation using ZPF and ASA methods	2	C	2	1,2
23	Synchronizing and parallel operation of alternators	1	C	2	1,2,5
24	Salient pole synchronous machine, two- reaction theory, slip test	2	C	2	1,2,5
	UNIT V- SYNCHRONOUS MOTOR	9			
25	Principle of operation, Methods of starting	1	С	2	1,2
26	Torque and power equations	1	C	2	1,2
27	Synchronous motor on load, Synchronous motor on constant excitation variable load.	1	С	2	1,2,4
28	Synchronous motor on constant load variable excitation, 'V' and inverted 'V' curves, Synchronous condenser	1	С	2	1,2,3
29	Hunting and its suppression	1	С	2	1,2,4
30	Behavior of synchronous machine on short circuit, capability curves	2	C	2	1,2
31	Brushless DC motor, PMSM	2	С	3	1,2
	Total contact hours			45	

LEARN	LEARNING RESOURCES							
Sl. No.	TEXT BOOKS							
1	Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing CoLtd., New Delhi, 4th edition 2010.							
2	Gupta., "Theory and Performance of Electrical Machines", Kataria and Sons, 14th edition 2009.							
3	MulukutlaS.Sarma and MukeshK.Pathak, "Electric Machines", Cengage Learning., New Delhi, 2012							
REFERE	ENCE BOOKS / OTHER READING MATERIAL							
4	Fitzgerald Kingsley and Umans, "Electric Machinery" McGraw HillBooks co., New Delhi, 7th Edition, 2013.							
5	R.K.Srivastava, "Electric Machines", Cengage Learning., New Delhi, 2nd edition, 2013							
6	Bhag S.Guru and Huseyin R.Hiziroglu "Electric Machinery and Transformers" Oxford University Press,3rd edition, 2012.							

Course nature Theory										
Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
	End semester examination Weightage :									

15EE210L	Electrical Machines Laboratory- II					Р 3	C 2
Co-requisite:	15EE	210					
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL CORE	ELECTRICAL	MACHIN	VES		
Course designed by	Department of Electrical and Electronics Engineering						
Approval	32 nd Academic Council Meeting, 2016						

I	PURPOSE To acquire fair knowledge on the working of different types of AC machines							
INSTI	RUCTIONAL OBJECTIVES	;	STUD	ENT	OUT	CON	AES	
At the	end of the course, the student will be able to							
	Understand the characteristics and performance of induction and synchronous machines.	a	b	e				
2.	Gain knowledge about speed control techniques on induction motor.	a	b	e				

Sl. No.	Description of experiments	Contact hours	C-D-I- O	IOs	Reference
1.	Load test on induction motor	6	I,O	1	1
2.	No load and blocked rotor test on 3-phase induction motor: To draw circle diagram and equivalent circuit	6	I,O	1	1
3.	Speed control of three-phase induction motor	6	I,O	1	1
4.	Voltage regulation of alternators by EMF,MMF and ZPF methods	9	I,O	2	1
5.	Synchronization and parallel operation of alternators	3	I,O	2	1
6.	Determination of 'V' and inverted 'V' curves	3	I,O	2	1
7.	Determination of X_d and X_q and regulation of salient pole alternator	3	I,O	1	1
8.	Determination of positive, Negative and Zero sequence reactance of synchronous machines	3	I,O	1	1
9.	Power angle characteristic of synchronous machine	3	I,O	1	1
10.	No load and blocked rotor test on 1-phase induction motor: To draw equivalent circuit	3	I,O	1	1
	Total contact hours			45	

LEARN	LEARNING RESOURCES							
Sl. No.	REFERENCES							
1.	Laboratory Manual							
2.	Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing CoLtd., New Delhi, 4th edition 2010.							
3.	Gupta., "Theory and Performance of Electrical Machines", Kataria and Sons, 14th edition 2009.							

Course nature				Practical					
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total			
	Weightage	40%	5%	5%	10%	60%			
End semester examination Weightage :									

15EF211		Control Systems]	L 3	Т 0	P 0	C 3
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	Р	PROFESSIONAL CORE	CIRCUITS	AND SY	STEN	ЛS		
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32nd	Academic Council Meeting, 2016						

PU	RPOSE	To provide students an introduction to the basic principles and tools fo feedback control systems.	r the d	esig	gn a	nd a	analy	ysis	of
INS	TRUCTIO	NAL OBJECTIVES	STU	DEN	T (OUI	ICO	MF	S
At t	the end of th	ne course, the student will be able to							
1.	understan	d the basic components of control systems	а						
2.	U	vledge in time and frequency domain tools for the design and analysis of ontrol systems	а	c	e	h	k		
3.	design con	npensators using time and frequency responses	а	с	e	h	k		
4.	understand	the concepts of state variable analysis	а						

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I: INTRODUCTION TO CONTROL SYSTEMS	10			
1.	Introduction to Control Systems	1	С	1	1
2.	Modeling and mathematical description of dynamic systems in the time and frequency domain	3	С	1	1,2
3.	System classification: Continuous-time systems, convolution and impulse response, step response. Transfer function analysis, poles, zeros	1	С	1	1,2
4.	Basic Characteristics of feedback control systems: stability, reference tracking, disturbance rejection, sensitivity and robustness	1	С	1	1,2
5.	Closed-loop systems. Block diagram algebra. Signal flow graphs	2	С	1	1,2
6.	Control hardware and their models: Servo motors, tachogenerators, gear train	1	С	1	2,4,5
7.	Case Study- DC motor Modeling using time and frequency domain.	1	С	1	1,2,3
	UNIT II : TRANSIENT, STEADY STATE AND STABILITY ANALYSIS	9			
8.	Time response of first and second order system	1	C	1,2,3	1,2
9.	Performance specifications in the time domain, Steady state error and generalized error constants	1	С	1,2,3	1,2
10.	Basic modes of feedback control: Proportional, Integral, Derivative	1	C	1,2,3	1,2
11.	Tuning (Ziegler-Nichols tuning-Step Response and Frequency response method) and design of PID controllers	2	C,D	1,2,3	1,4
12.	Stability, BIBO stability, Routh-Hurwitz stability criterion and Root Locus	3	C	1,2,3	1,2
13.	Case study- Speed Control of DC Motor using PID -Simulation	1	C,D,I	1,2,3	1,2,3
	UNIT III : FREQUENCY RESPONSE ANALYSIS	9			

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
14.	Frequency response of dynamic systems, graphical representation of gain and phase data	1	С	1,2,3	1,2
15.	Constant M-circles, constant N-circles, Nichols Chart	1	С	1,2,3	1
16.	Nyquist plot (Polar Plot), Use of Nyquist stability criterion for stability analysis	2	С	1,2,3	1,2,4,5
17.	Bode diagrams, Gain margin and phase margin	2	C	1,2,3	1,2,4,5
18.	Performance specifications in frequency domain, Case study-Motor Control	3	C,D	1,2,3	1,2,3
	UNIT IV : COMPENSATOR DESIGN USING TIME AND FREQUENCY RESPONSES	9			
19.	Feedback compensation -Lead, Lag compensation	1	С	1,2,3	1,2
20.	Control systemdesign using Root locus	3	C,D	1,2,3	1,2
21.	Control systemdesign using Bode Plot	3	C,D	1,2,3	1,2
22.	Case Study- Motor Control –Stability Analysis	2	C,D,I	1,2,3	1,2,3
	UNIT V: STATE SPACE ANALYSIS	8			
23.	Introduction to multiple input multiple output systems, State variables, State equation	1	С	4	1,4
24.	State transition matrix	3	С	4	1,4
25.	Controllability, Observability	2	С	4	1,4
26.	State space feedback, Design of control systems in State space	1	С	4	1,4
27.	Pole placement technique. Case Study – Electric machines Control	2	C,D,I	4	1,4
	Total contact hours			45	

LEARNING RESOURCES

Sl. No.	TEXT BOOKS
1.	Nise, N.S, "Control System Engineering", Wiley, 6th Edition, 2010.
2.	Golnaraghi, F and Kuo, B.C, "Automatic control systems" Prentice Hall, 9th Edition, 2008.
REFERE	ENCE BOOKS/OTHER READING MATERIAL
3.	Dorf, R.C and Bishop, R.H, "Modern Control systems", Addison-Wesley, 12th Edition, 2011.
4.	Ogata, K, "Modern control engineering", Prentice Hall, 5th Edition, 2010.
5.	Nagrath I.J and Gopal M, "Control Systems Engineering", New Age Publishers, 5th Edition, 2009.

Course nature Theory							
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE212L		Measurements And Control Systems Laboratory					C		
		······································	0	0	2	1			
Co-requisite:	15EF	E211, 15EE207							
Prerequisite:	NIL	ΠL							
Data Book /	NIL								
Codes/Standards	INIL								
Course Category	Р	PROFESSIONAL CORE	ELECTRICAL M	ACHI	VES				
Course designed by	Depa	Department of Electrical and Electronics Engineering							
Approval	32nd	32 nd Academic Council Meeting ,2016							

]	PURPOSE To develop skills in designing and conducting experiments related to measuring instruments, transducers and control systems								of
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At th	e end of the course, stud	lent will be able to							
1.	Learn the measurem quantities using LABV	ent of non-electrical variables and electrical IEW	a	b	h				
2.	Gain knowledge abou	t the working of various Transducers	а	b	h				
3.	Simulate various con package.	ontrollers and stability analysis using software	a	b	h				

Sl. No.	Description of experiments	Contact hours	C-D-I- O	IOs	Reference
1.	Measurement of R, L and C using bridge circuit in Labview	3	I,O	1-3	1-3
2.	Measurement of power and energy using ARDUINO interfaced with Labview	3	I,O	1	1
3.	Power factor measurement using Labview	3	I,O	1	2,1
4.	Measurement of water level using capacitive Transducer	3	I,O	2	1
5.	Measurement of strain using strain Gauge	3	I,O	3	1
6.	Measurement of liquid flow rate -Water flow gauge using ARDUINO	3	I,O	3	1
7.	Output characteristics of LVDT and Measuring displacement using LVDT	2	I,O	3	1
8.	Speed control of DC motor using LABVIEW	2	I,O	1	1
9.	Stability analysis of a second order system using MATLAB software-Calculation of Phase margin and gain margin using MATLAB		I,O	2	3
10.	Digital simulation of the P,PI,PD,PID controllers using MATLAB software	2	I,O	2	3
11.	Obtaining transfer function and state model using MATLAB software	2	I,O	2	3
12.	Lead ,lag compensator using MATLAB software	2	I,O	2	3
	Total contact hours			30	

LEARN	LEARNING RESOURCES								
Sl. No.	REFERENCES								
No.	NET ERENCES								
1.	Laboratory Manual								
2.	Jerome J "Virtual Instrumentation Using Labview" PHI publication, paperback 2010.								
3.	P. Gruggett," LABVIEW Technical Resource Lynda" LTR Publishers, Dallas, TX.								

Course natu	re			Practical		
Assessment	Method (Weight	age 100%)		·		
In-	Assessment	Experiments	Record	MCQ/Quiz/Viva	Model	Total
	tool	Experiments	Recolu	Voce	examination	10141
semester	Weightage	40%	5%	5%	10%	60%
End semester examination Weightage : 4						40%

1	5EE213	Generation, Transmission	n And Distrib	ution	L 3	T P C 0 0 3		
Co-requisi	te:	NIL						
Prerequisit		NIL						
Data Book		NIL						
Codes/Star			DOW					
Course Ca Course des		P PROFESSIONAL CORE Department of electrical and electro		ER SYST	EMS			
Course des Approval	igneaby	32 nd Academic Council Meeting 20		ng				
пррточи		· · · · · · · · · · · · · · · · · · ·						
PURPOSE	fair kı	quire knowledge in the economics a nowledge in the recent trends in pow		on and D	istributior	n Systems		
	FIONAL OBJE			SI	UDENT	OUTCOMES		
		dent will be able to						
		connected with power generation		a				
		nce of transmission lines.	<u> </u>	a e				
insu	lation.	es and constructional features of		a				
		mission and distribution Substation		a e	h			
5. Fami	liarize with IE ru	les for transmission and distribution	systems	a				
Session	D	escription of Topic	Contact hours	C-D-I- O	IOs	Reference		
	UNIT I: GENER ECONOMICS	RATION AND ITS	9					
1.	Load curve and l	oad duration curve – Load, demand tors – Plant capacity and plant use	1	С	1	1,3		
2.		of generation – choice of size and cost of energy generated – Tariffs	1	C	1	1,3		
3.	Conventional s layout of therma	ource of electrical energy-basic l power generation, hydro electric n and nuclear power plant.	2	C	1	1,3		
4.	Energy, power conventional power	r, efficiency calculations of	1	C	1	1,3		
5.		sustainable energy resources (PV,	2	С	1	1,3		
6.	transmission and	ating voltages of generation, distribution – advantage of higher ge for AC transmission-Indian	1	С	1	1,3		
7.	An introduction transmission, IE and substation.	to EHV AC transmission, HVDC Rules for insulators, cables, OHT	1	С	2,5	1,3		
	PARAMETERS		9					
8.	(single and dou bundled conduct		2	C	2,5	2,3,5,6		
9.	introducing	nsmission line parameters by RES to utility-Resistance calculation for conductor in	2	C,D	2	2,3,5,6		
10.	Inductance cal		2	C,D	2	2,3,5,6		
11.	Capacitance ca	lculation for symmetrical and onductors-qualitative analysis	2	C,D	2	2,3,5,6		
12.	skin and proxi neighbouring discharge charac	nity effects - interference with communication circuits-Corona teristics	1	С	2	2,3,5,6		
	UNIT III PERF TRANSMISSIO	ORMANCE OF N LINES	9					

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
13.	Performance of short, medium and long transmission line	2	C,D	2	2,3,5,6
14.	Ferranti effect - surge impedance, attenuation constant and phase constant - voltage regulation and transmission efficiency	2	C,D	2	2,3,5,6
15.	Performance of Transmission Lines and Voltage Regulation quantitative analysis	2 2 2 2 2 2 2 nes – power circle 2 C,D 2 2 2 surge-impedance 1 C 2 2 2 on thermal loading 1 C 2 2 2 LES AND SAG 9 1 C 3 $1,2$ transmission and 2 C 3 $1,2$ e distribution in 2 C 3 $1,2$ conal features of LT 1 C 3 $1,2$ e, dielectric stress 2 C,D 3 $1,2$ e, dielectric stress 2 C,D 3 $1,2$ ct of wind and ice 2 C,D 3 $1,2$ for wind and ice 2 C,D 3 $1,2$ s of substations- 1 C 4 $2,2$ e bus, double bus 2 C 4 $2,3$ with single breaker, 2 C 4 $2,3$ uators 1 C 4 $2,3$ wice mains. DC 1 C 4 $2,3$	2,3,5,6		
16.	real and reactive power flow in lines – power circle diagrams	2	C,D	2	2,3,5,6
17.	shunt and series compensation- surge-impedance loading, loadability limits based on thermal loading	1	C	2	2,3,5,6
	UNIT IV INSULATORS, CABLES AND SAG CALCULATION	9			
18.	Classification of insulators for transmission and distribution purpose – voltage distribution in insulator string and grading	2	С	3	1,2,3,4
19.	improvement of string efficiency	2	С	3	1,2,3,4
20.	Underground cables - constructional features of LT and HT cables	1	C	3	1,2,3,4
19.	Insulation, resistance, capacitance, dielectric stress and grading – tan δ and power loss - thermal characteristics.	2	С	3	1,2,3,4
20.	Stress and Sag calculations – effect of wind and ice	2	C,D	3	1,2,3,4
		9			
21.	Classification, major components of substations- Bus-bar arrangements	1	C	4	2,3,4
22.	Substation bus schemes- (single bus, double bus with double breaker, double bus with single breaker, main and transfer bus)	2	С	4	2,3,4
23.	Double bus-bar with bypass isolators	1	С	4	2,3,4
24.	Importance of earthing in a substation - Qualitative treatment to neutral grounding and earthing practices in substations	1	С	4	2,3,4,8
25.	Feeders, distributors and service mains. DC distributor – quantitative analysis of radial distribution	2	С	4	2,3,4,8
26.	Ring main distribution- AC distribution – single phase and three phase 4-wire distribution.	2	C	4	2,3,4,8
	Total contact hours			45	
EARNIN	G RESOURCES				
	EXT BOOKS				
	ai G.D., "Non conventional energy resources", Khann				
	Vadwa. C.L., "Electric Power Systems, Wiley Eastern 1				
	letha.V.K, and Rohit Metha,"Principles of Power Syst	<i>em</i> '', S.Chand	, 2005.		
4. Li	CE BOOKS/OTHER READING MATERIAL aces M. Fualkenberry, Walter Coffer, " <i>Electrical</i> ducation,1996.	Power Distr	ibution an	nd Transi	nission", Pears
5. D	espande.M.V, "Electrical Power Systems Design", T 005.	Tata McGraw	Hill Publis	hingCom	pany, New Del
	Villiam.D. Stevenson. Jr., "Elements of Power System A	Analysis", Mc	Graw Hill,	NewDell	ni, 2014
7. N	agarath.I.J. & Kothari.D.P., "Modern Power System A ew Delhi ,2014.				
8. C	entral Electricity Authority (CEA), "Guidelines for Tr	ansmission Sy	vstem Plan	ning", Ne	ew Delhi

Course nature	re			Theory			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE301J		Power Electronics	L	Т	Р	С		
				3	0	2	4	
Co-requisite:	Nil							
Prerequisite:	Nil							
Data Book /	-							
Codes/Standards								
Course Category	Р	PROFESSIONAL CORE	ELECTRONICS					
Course designed by	Depa	Department of Electrical & Electronics engineering						
Approval	32 nd /	32 nd Academic Council Meeting, 2016						

P	URPOSE	To learn the characteristics and applications of power	elect	ronic	device	s and	circu	its.			
INSTRU	INSTRUCTIONAL OBJECTIVES				STUDENT OUTCOMES						
At the er	At the end of the course, the student will be able to										
1.	1. Learn the characteristics of different types of power electronic devices										
2.	Understand and analyze the operation of controlled rectifiers, choppers, inverters				h						
3.					h	j					

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: POWER ELECTRONIC DEVICES	9			
1.	Introduction to power semiconductor devices	2	С	1	1,3
2.	Construction - Principle of operation - Dynamic characteristics of Power diodes, SCR, Power MOSFET, IGBT	4	C	1	1,3
3.	Protection circuits: Snubber, over voltage and over current, Crowbar	2	С	1	1,3
4.	Power loss calculation (Switching, conduction and leakage losses)	1	C	1	3,6
	UNIT II: AC TO DC CONVERTERS	9			
5.	Single-phase and three-phase controlled rectifiers (half and full converters) with R, RL and RLE load	2	С	2	1,2
6.	Estimation of average and RMS load voltages, RMS load current and input power factor	2	С	2	1,3
7.	Effect of source inductance	1	С	2	1,3
8.	Single-phase and three-phase dual converters	2	С	2	1,3
9.	Generation of control signals for single-phase AC to DC converters – Cosine wave crossing control, ramp comparator approach	2	C	2	3,4
	UNIT III: DC TO DC CONVERTERS	9			
10.	Principle of step up and step down operation – single quadrant DC chopper with RLE load –Time ratio control	2	С	2	1,2
11.	Forced commutated chopper:Voltage commutated choppers	2	С	2	1,4
12.	Forced commutated chopper:Current and load commutated choppers	2	С	2	1,4
13.	Sepic, Cuk converter - Buck-Boost converter	3	С	2	1,6
	UNIT IV: DC TO AC CONVERTERS	9			
14.	Single-phase voltage source inverter	2	С	2	1,3
15.	Three-phase voltage source inverter (120° and 180°)	3	С	2	1,3
16.	Single phase diode clamped multilevel inverter	1	С	2	1,7
17.	PWM techniques: multiple PWM, SPWM, modified SPWM - Harmonic reduction	3	C,D	2	1,5
	UNIT V: AC TO AC CONVERTERS AND POWER ELECTRONIC APPLICATIONS	9			
18.	AC Voltage regulator	1	С	3	1,4
19.	Cycloconverter: Step up and step down	1	С	3	1,4

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
20.	Cycloconverter: Three-phase to single-phase and three-phase to three- phase	2	С	3	3,4
21.	Introduction to matrix converter	2	С	3	1,7
22.	UPS - SMPS – HVDC systems – Tap changing of transformers	3	С	3	1,3
	Total contact hours			45	

Sl. No.	Description of experiments	Contact hours	C-D-I-O	IOs	Reference
1.	Single-phase Semi and Full converter	3	I,O	2	1-3
2.	Cuk converter	3	I,O	2	1,6
3.	Sepic converter	3	I,O	2	1,6
4.	3-phase PWM inverter using IGBT	3	I,O	2	1,3
5.	Series inverter and Parallel Inverter	3	I,O	2	1,3
6.	Single-phase Cycloconverter	3	I,O	3	1,3
7.	Single-phase AC voltage controller using Triac	3	I,O	3	1,3
8.	Fly back converter(SMPS)	3	I,O	3	1,3
9.	FPGA based single-phase diode clamped multi- level inverter	3	D,I,O	2	1,7
10.	Simulation of Boost converter using MATLAB	3	D,I	2	1,3
	Total contact hours	30			

LEARN	NG RESOURCES
Sl. No.	TEXT BOOKS
1.	Rashid, M.H., "Power Electronics - Circuits Devices and Applications", Prentice Hall of India, 2014, 4th
	edition.
2.	Sen.P C, "Power Electronics", Tata Mc Graw Hill Education, 2012, 39th reprint .
3.	Bhimbra .P. S. "Power Electronics", Khanna publishers, 2012, Fifth edition.
REFERI	ENCE BOOKS/OTHER READING MATERIAL
4.	Singh. M.D and Kanchandani-"Power Electronics"-Tata McGraw-Hill & Hill Publication Company Ltd,
	2015, 23rd reprint.
5.	Joseph Vithayathil, "Power Electronics Principle and applications", Mc Graw Hill Education, edition 2010.
6.	Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics: converters, Application and design",
	John Wiley and sons, 3 rd edition, 2006.
7.	Andrzej M. Trzynadlowski "Introduction to modern power electronics", John Wiley and sons, 3rd edition,
	2015.
8.	V R Moorthi, "Power Electronics: Devices, Circuits and Industrial Applications", Oxford University
	Press India, 2005.

Course natur	e			Theory	+ Practical				
Assessment N	Method – Theory	Component (Weig	ghtage 50%)						
In-semester	Assessment tool	Cycle test I	Cycle test II	II Cycle Test III Test		Quiz	Total		
	Weightage	10%	15%			5%	50%		
	End semester examination Weightage :								
Assessment N	Method – Practical	Component (W	eightage 50%	5)					
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Model Voce examination		Model examination	Total		
	Weightage	40%	5%	5%	10%		60%		
	End semester examination Weightage :								

15EE302		Power System Protection					Р	С
1314502	10wei System Frotection					0	0	3
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book /	NIL							
Codes/Standards	INIL							
Course Category	Р	PROFESSIONAL CORE		POWER SYSTEMS	S			
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32nd	32 nd Academic Council Meeting, 2016						

PURPOSE To gain the knowledge on the basic concepts of protection schemes of power system equipment, Switch gear and get familiarized with the modern trends in protection.							n	
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOM							MES	
At th	e end of the course, student will be able to							
1.	Realize the basic protective schemes applied in power system protection.	a						
2.	2. Emphasize the significance and application of protection for electrical equipment							
3.	Educate the new developments in power system protection	а	h					

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: INTRODUCTION TO PROTECTIVE SCHEMES	9			
1.	Realise the basic protective schemes applied in power systemprotection.	1	C	1	1,2,3
2.	Evolution of protective relays - Zones of protection - Primary and Back -up Protection	1	С	1	1,2,3
3.	Essential qualities of Protection - Classification of Protective schemes	1	C	1	1,2,3
4.	Concept of reset, pick up, inverse time and definite time characteristics, over current, over voltage, directional, relay	2	С	1	1,2,3
5.	Differential relay	1	С	1	1,2,3
6.	Distance relays on R-X diagram	1	С	1	1,2,3
7.	Static Relays: Introduction, advantages and limitations of static relays, static over current, directional relays.	1	С	1	1,2,3
8.	Negative sequence relays	1	С	1	1,2,3
	UNIT II : PROTECTION OF EQUIPMENT				, ,
9.	Types and detection of faults and their effects	1	С	2	1,2,3
10.	Alternator protection schemes (stator, rotor, reverse power protection etc.)internal faults protection), generator-transformer unit protection scheme	2	С	2	1,2,3
11.	Transformer protection (External and internal faults protection), Buccholz relay, generator-transformer unit protection schemes	2	С	2	1,2,3
12.	Bus bar protection	1	С	2	1,2,3
13.	Transmission line protection (current/time grading, distance)	1	С	2	1,2,3
14.	Pilot relaying schemes.	1	С	2	1,2,3
15.	Power line carrier protection	1	С	2	1,2,3
	UNIT III : SWITCHGEAR	9			
16.	Theory of current interruption- energy balance and recovery rate theory, arc quenching, recovery and restriking voltagesTypes of circuit breakers. bulk oil CB	1	С	2	1,3
17.	Types of circuit breakers. bulk oil CB	1	С	2	1,3
18.	Minimum oil CB	1	С	2	1,3
19.	Air break and air blast CBs	1	С	2	1,3
20.	Sulphur hexafluoride (SF6) and vacuum circuit breakers	2	С	2	1,3

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
21.	Rating selection and testing of circuit breakers	1	С	2	1,3
22.	Operating mechanisms - LT switchgear, Gas insulated switchgear	1	С	2	1,3
23.	HRC fuses, types, construction and applications.	1	С	2	1,3
	UNIT IV : SURGE PROTECTION AND INSULATION CO-ORDINATION	9			
24.	Introduction-Power frequency, switching and lightning overvoltages	1	С	2	1,3,4
25.	Klydonograph and magnetic link	1	С	2	1,4
26.	Protection of transmission lines against direct line strokes	1	С	2	1,4
27.	Protection of stations and sub-stations from direct strokes	2	С	2	1,4
28.	Protection against travelling waves	1	С	2	1,4
29.	Peterson coil, Insulation co-ordination, Basic impulse insulation level	3	C	2	1,4
	UNIT V : MODERN TRENDS IN POWER SYSTEM PROTECTION	9			
30.	Numerical Protection-Data acquisition systems (DAS), Numerical over current protection	2	С	3	1,2,3,5
31.	Numerical differential protection,	1	С	3	1,2,3,5
32.	Numerical distance protection	1	С	3	1,3,5
33.	Fibre optic based relaying, microwave relaying	2	С	3	1
34.	FPGA based relays, adaptive protection, Wide area protection	1	С	3	1,6
35.	Applications of AI techniques to power system protection, protection substation Automation	2	C,I	3	1,3
	Total contact hours			45	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Badriram & Vishwakarma, "Power System Protection", Tata McGraw-Hill Education, 10th reprint, 2015.
2.	Paithankar Y. G., S. R. Bhide., "Fundamentals of power system protection" PHI Learning Pvt. Ltd., 10th
	reprint,2010.
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	Ravindra Nath.B, and Chandar.M "Power systems protection and switchgear", New age international (P)
	Ltd.3 rd reprint, 2014.
4.	Rao Sunil.S, "Switchgear and protection" Khanna Publishers, 2nd Edition, 2011.
5.	T.S.M Rao, "Digital/Numerical Relays", Tata McGraw-Hill Education, 2005.
6.	Bhavesh Bhalja, R P Maheswari, Nilesh G Chothani, "Protection and Switchgear" Oxford University press,
	first edition, 5 th reprint 2014.
-	

Course nature	Course nature Theory							
Assessment	Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
				End semest	er examination	Weightage :	50%	

15EE303		Discrete Transforms And	Discrete Transforms And Signal Processing						
Co-requisite:	Nil								
Prerequisite:	Nil								
Data Book /	Nil								
Codes/Standards	1111								
Course Category	Р	PROFESSIONAL CORE	INTELLIGENT SY	STEN	1S				
Course designed by	Dep	Department of Electrical and Electronics Engineering							
Approval	32 nd	¹ Academic Council Meeting, 201	16						

]	PURPOSE To acquire indepth knowledge in analyzing discrete time signals and systems in the tand frequency domain and also in designing filters.								
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At the end of the course, student will be able to									
1.	Classify signal	s and systems and their mathematical representation.	а	с					
2.	Learn discrete	Fourier transform and its properties.	а	с	e				
3.	Design IIR filt	ers using analog to digital transformation.	а	с	e	h			
4.	Design FIR filters using windows technique.				e	h			
5.	Understand dig	gital signal processors and their programming.	а	j					

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I: Discrete Time Signals and Systems	9			
1.	Need and benefits of Digital Signal Processing – Signal Classification and basic operations on them – Properties of DT system	3	С	1	1,2
2.	Linear, Time Invariance, Causal, Stable, Passive and Lossless – LTI system	2	С	1	1,2
3.	Convolution Sum- Interconnection Schemes- I/O relationship determination of impulse response and step response	2	С	1	1,2
4.	Antialiasing and Anti Imaging Filtering-Typical DSP system: ADC/DAC – sampling, quantization and encoding	2	С	1	1,2
	UNIT II: Discrete Transforms	9			
5.	Discrete Fourier Transform (DFT): Properties	3	C,I	2	1,2
6.	DIT FFT and DIF FFT algorithms	2	C,I	2	1,2
7.	Linear filtering via circular convolution-inverse FFT	2	C,I	2	1,2
8.	Wavelet Transform: Multi Resolution Analysis	2	C,I	2	1,2,8
	UNIT III: Infinite Impulse Response Digital Filters	9			
9.	Review of design of Analogue Butterworth and Chebyshev Filters, Frequency transformation in analogue domain	4	C,D	3	1,2,4
10.	Design of IIR digital filters using impulse invariance technique	1	C,D,I	3	1,2,4
11.	Design of digital filters using bilinear transform	1	C,D,I	3	1,2,3
12.	Pre warping – Frequency transformation in digital domain	1	C,D	3	1,2,3
13.	Realization using direct, cascade and parallel forms.	2	C,I	3	1,2
	UNIT IV: Finite Impulse Response Digital Filters	9			
14.	Symmetric and Anti symmetric FIR filters, Linear phase FIR filters design using Frequency Sampling technique	3	С	4	1,2

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
15.	Window design using Hamming, Hanning and Blackmann	3	D,I	4	1,2,
16.	Realization of FIR filters: Transversal, Linear phase and Polyphase realization structures.	3	D,I	4	1,2,7
	UNIT V: General Purpose Signal Processors	9			
17.	Computer Architectures for Signal Processing – Van Neumann and Harvard architectures pipelining	3	С	5	1,4,6
18.	Hardware multiplier-accumulator-special instructions-replication on-chip memory	3	С	5	1,4,6
19.	SIMD, VLIW and super scalar processing – selecting digital signal processors.	3	С	5	1,4,6
	Total contact hours		4	45	

LEARNING RESOURCES

Sl. No.	TEXT BOOKS							
1.	John. G. Proakis, Dimitris .G. Manolakis, "Digital Signal Processing: Principles, Algorithms & Applications", Prentice Hall of India, New Delhi, 2014							
2.	Oppenheim, A.V.and Schaffer, R.W., "Discrete Time Signal Processing", Prentice Hall of India, New Delhi,2007							
REFER	ENCE BOOKS/OTHER READING MATERIAL							
3.	Emmanuel C. Ifeachor, Barrie W.Jervis, "Digital Signal Processing, A Practical approach", Pearson Education India Series, New Delhi, 2004							
4.	Sanjit K.Mitra, "Digital Signal Processing, A Computer based Approach", Tata McGrawHill Publishing Company Limited, New Delhi, 2010							
5.	Lonnie C.Ludeman, "Fundamental of Digital Signal Processing", John Wiley & Sons, New Jersey, 2003.							
6.	Venkataramani.B.,Bhaskar.M. " <i>Digital Signal Processors, Architecture, Programming and Application</i> ", Tata McGrawHill, New Delhi,2003							
7.	Johny R. Jhonson, "Introduction to Digital Signal Processing" PHI, 2006							
8.	Robert X. Gao and Ruqiang Yan, Wavelets: Theory and Applications for Manufacturing, Springer, 2010.							
9.	"ARM education weblink" {https://www.arm.com/resources/education/education-kits}							

Course natu	Course nature Theory							
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
	End semester examination Weightage:							

15EE304	Power System A	Power System Analysis						
Co-requisite:	Nil							
Prerequisite:	Nil							
Data Book / Codes/Standards	Nil							
Course Category	P PROFESSIONAL CORE	POWER SYSTEMS						
Course designed by	Department of Electrical and Electronic	Department of Electrical and Electronics Engineering						
Approval	32 nd Academic Council Meeting, 2016							

PURPOSE To gain comprehensive knowledge on power system analysis problems.								
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							AES	
At th	e end of the course, student will be able to							
1.	Develop mathematical model of a given power system.	а	e					
2.	Perform power flow analysis using numerical techniques.	а	e					
3.	Analyze the behavior of the power system under faulted condition.	а	e					
4.	Study the stability status of power system under transient condition.	а	e					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: POWER SYSTEM OVERVIEW	7			
1.	Power scenario in India, Power system components	1	С	1	1
2.	Representation, Single line diagram, per unit quantities, p.u impedance diagram	2	C	1	1
3.	Network graph, Bus incidence matrix, Primitive parameters	1	С	1	1
4.	Bus admittance matrix from primitive parameters	1	С	1	1
5.	Representation of off nominal transformer, Formation of bus admittance matrix of large power network	2	С	1	1
	UNIT II: POWER FLOW ANALYSIS	10			
6.	Bus classification, Formulation of Power Flow problems	1	С	2	1,4
7.	Power flow solution using Gauss Seidel method	2	С	2	1,4
8.	Handling of Voltage controlled buses	1	С	2	1,4
9.	Power Flow Solution by Newton Raphson method	4	С	2	1,4
10.	Fast Decoupled Power Flow Solution	2	С	2	1,4
	UNIT III: SYMMETRICAL FAULT ANALYSIS	8			
11.	Symmetrical short circuit on Synchronous Machine	1	С	3	2
12.	Bus Impedance matrix building algorithm (without mutual coupling),	2	С	3	2
13.	Symmetrical fault analysis through bus impedance matrix	3	С	3	2
14.	Fault level, Current limiting reactors	2	С	3	2
	UNIT IV: UNSYMMETRICAL FAULT ANALYSIS	10			
15.	Symmetrical components	1	С	3	2
16.	Sequence impedances, Sequence networks	1	С	3	2
17.	Analysis of unsymmetrical fault at generator terminals	3	С	3	2
18.	Bus impedance matrices of zero sequence, positive sequence and negative sequence	2	С	3	2
19.	analyzing unsymmetrical fault occurring at any point in a power system.	3	С	3	2
	UNIT V: POWER SYSTEM STABILITY	10			
20.	Introduction to stability studies	1	С	4	1,3,5
21.	Swing equation	1	C	4	1,3,5
22.	Swing curve, Power-Angle equation	1	C	4	1,3,5
23.	Equal area criterion	2	C	4	1,3,5
24.	Critical clearing angle and time	1	C	4	1,3,5

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
25.	Further applications of the equal-area criterion	2	С	4	1,3,5
26.	Classical step-by-step solution of the swing curve	2	С	4	1,3,5
	Total contact hours	45			

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	John.J.Grainger, William D. Stevenson, Jr, "Power System Analysis", Mc Graw Hill Education (India)
	Private Limited, New Delhi, 2015.
2.	William D. Stevenson, Jr., "Elements of Power System Analysis", McGraw-Hill Hill Education (India)
	Private Limited, New Delhi, 2014.
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	Nagarath I.J. and Kothari D.P., "Modern Power System Analysis", Fourth Edition, Mc Graw Hill Education
	(India) Private Limited, New Delhi, 2015.
4.	Hadi Sadat, "Power System Analysis", Tata Mc Graw Hill Publishing company, New Delhi, 2002.
5.	Pai M.A. and Dheeman Chatterjee "Computer Techniques in Power System Analysis", Mc Graw Hill
	Education (India) Private Limited, New Delhi, 2016.

Course nature Theory								
Assessment Method (Weightage 100%)								
I	Assessment tool	Cycle test I	Cycle test II	Cycle '	Test III	Surprise Test	Quiz	Total
In-semester	Weightage	10%	15%	15	%	5%	5%	50%
	End semester examination Weightage : 50						50%	

15EE305J		Microcontrollers			Т 0	P 2	C 4
Co-requisite:	Nil						.
Prerequisite:	Nil						
Data Book / Codes/Standards	Nil						
Course Category	Р	PROFESSIONAL CORE	INTELLIGEN	T SYST	EMS		
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32 nd	Academic Council Meeting ,2016					

PURI	POSE To acquire knowledge on Microcontrollers, Processor	rs and	interfa	cing c	levice	s.								
INST	RUCTIONAL OBJECTIVES		STUI)ENT	OUT	COM	IES							
At the	t the end of the course, the student will be able to													
	Gain knowledge in INTEL 8085 architecture, interrupt and programming structures.	а												
2.	Design ARM processor based systems along with I/O interfacing.	а	с											
	Understand the impact of 8051 and PIC microcontrollers in Engineering applications.	а	с	e	k									

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: PROCESSOR BASED SYSTEM	9			
1.	Evolution of Microprocessors, Microcontrollers and Computers, Microprocessor based system design – need and steps-Advantages and limitations.	2	С	1	1, 2
2.	Intel 8085, Pentium Architecture Bus system – Decoders – Tri state logic.	2	C	1	1, 2
3.	Memory devices: classifications, Mapping and its interfacing- Data Transfer.	3	C,D	1	1, 2
4.	Concepts, Methods – Parallel I/O interfacing – Serial I/O interfacing concepts –DMA method of transfer.	2	C	1	1, 2
	UNIT II: INTERFACING DEVICES	9			
5.	8255 programmable peripheral interface - 8257/8237 programmable DMA controller, 8279 keyboard/display interfacing - 8253/8254 programmable Timer.	4	С	1	1, 2
6.	Need of Interrupts – 8259 programmable interrupt controller.	5	С	1	1, 2
	UNIT III: HIGH PERFORMANCE RISC ARCHITECTURE- ARM PROCESSORS	9			7
7.	The ARM (nuvoTon –NU-LB-NUC140) architecture - ARM organization and implementation – ARM instruction set.	3	C,I	2	1, 2
8.	Basic ARM ALP (32-bit addition, subtraction, multiplication, binary sorting), ARM memory interface – AMBA bus architecture.	2	C	2	1, 2,
9.	Hardware system prototyping tools - the ARMulator.	4	C,D	2	1, 2
	UNIT IV: INTEL 8051 MICROCONTROLLERS	9			
10.	Role of microcontrollers – 8 bit microcontrollers.	3	С	3	1, 2,
11.	Architecture of Intel 8031/8051/8751 –hardware description memory organization.	3	C	3	1, 2,
12.	Addressing modes – overview of instruction set – simple programs.	3	D,I	3	1, 2
	UNIT V: PIC MICROCONTROLLERS and APPLICATIONS	9			
13.	Introduction - PIC microcontroller- Architecture-memory organization – I/O ports – Reset circuits – Instruction set.	3	С	3	1, 2
14.	Compare/capture/PWM- Application and introduction to MPLAB.	2	С	3	1, 2
15.	Stepper motor control – Speed control of DC motor – Waveform Generator – Frequency counter - Real time clock– Generation of Gating Signals for Converters and Inverters.				1, 2
	Total contact hours		4	5	

Sl. No.	Descripti	ion of experim	ents	Contact hours	C-D- I-O	IOs	Refere	ence	
	PART-A		PURPOSE PRO	GRAMMING	J EXER	CISES			
1.	Introduction of Micro Kit.				I	1-3	1-3		
2	Addition, Subtraction,	Multiplication	and Division.	3	С	1,2	1		
3.	Finding the maximum			3	D	1,2	2		
4.	Sorting of data.		«j·	3	I	1-3	1-3		
5.	Finding number of po block of data.	ositive / negati	ve elements in a		C	1-3			
6.	BCD-to-Hex conversion	on and Hex-to-	BCD conversion	3	D	1-3	2		
7.	Binary-to-ASCII and			3	I	1-3	1-3		
8.	Square Root of a given		y conversion.	3	C	1-3	1		
9.	LCM and GCD	i data.		3	D	1-3	2		
).		TERFACING	WITH APPLIC	-					
	1 / M 1 - D 1 1 (Five experiment			, , , , , , , , , , , , , , , , , , ,	J)		
10.	8255 PPI.	(iviiiiiuuu	Tive experiment	3	C	1-3	1-3		
11.	Transfer data serially 8253/8251).	between two	o kits (Study of	3	D	1-3	1		
12.	8279 Keyboard & dist	play using 8051	controller.	3	Ι	1-3	2		
13.	Seven segment display		controller.	3	C	1-3	1-3		
14.	LCD Display using 80			3	I	1-3	1-3		
15.	Traffic light.	51		3	C	1-3	1		
16.	8259 programmable ir	terrunt control	ler	3	D	1-3	2		
17.	8257/8237 DMA cont			3	I	1-3	1-3		
18.	8 bit ADC and 8 bit D			3	C	1-3	1-5		
19.	Stepper motor control		ntroller	3	D	1-3	2		
20.	DC motor speed meas			3	I	1-3	1-3		
20.	Real Time Clock		muor module.	3	C	1-3	1-3		
21.	Total contact hours			5	C	30	1-4		
						50			
	ING RESOURCES TEXT BOOKS								
1.	Gaonkar.R.S, "Microp	rocessor Archi	tecture, Program	ming and Appl	ications"	, Wiley Ea	stern Limite	ed, New	
	Delhi, 5 th Edition, 199	97.	Ū.	~		-			
2									
2.	Kenneth Ayala, "Intel	8051 – Microc	ontrollers", Pren	tice hall, Secon	nd Edition	n, 2005.			
	Kenneth Ayala, "Intel ENCE BOOKS/OTH			tice hall, Secor	nd Edition	n, 2005.			
		ER READING	G MATERIAL			n, 2005.			
REFER	ENCE BOOKS/OTH	ER READING 2051 Microcont	G MATERIAL <i>trollers</i> ", Pearson	Education Ind	ia, 2006.	n, 2005.			
REFER 3. 4.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i>	ER READING 2051 Microcont auter Hardware	G MATERIAL trollers", Pearson ", McGraw Hill	Education Ind Book Company	ia, 2006. 7.,1995.				
REFER 3.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic	ER READING 2051 Microcont uter Hardware roprocessor ar	G MATERIAL trollers", Pearson ", McGraw Hill 1 ad Interfacing", T	Education Ind Book Company Tata McGraw H	ia, 2006. 7.,1995. Iill, 2006				
REFER 3. 4. 5. 6.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Design</i>	ER READING 2051 Microcont uter Hardware proprocessor at n with PIC Mic	5 MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 <i>ad Interfacing</i> ", T <i>trocontrollers</i> ", P	Education Ind Book Company Tata McGraw H earson Educati	ia, 2006. 7.,1995. Iill, 2006 on Asia,	2001.			
REFER 3. 4. 5. 6. 7.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> Steve Furber, " <i>ARM S</i>	ER READING 2051 Microcont uter Hardware proprocessor an with PIC Mic ystem-on-chip	G MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 ad Interfacing", T procontrollers", P architecture", Pe	Education Ind Book Company Tata McGraw H earson Educatio arson Educatio	ia, 2006. 7.,1995. Iill, 2006 on Asia, n, India,	2001. 2000.	an/Elsevier	, 2007.	
REFER 3. 4. 5. 6.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym	ER READING 2051 Microcont uter Hardware proprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C	C MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill <i>id Interfacing</i> ", T <i>trocontrollers</i> ", P <i>architecture</i> ", Pe , "ARM system d	Education Ind Book Company Tata McGraw H earson Educatio arson Educatio evelopers guide	ia, 2006. 7.,1995. lill, 2006 on Asia, n, India, e", Morg	2001. 2000. an Kauffm	an/Elsevier	, 2007.	
REFER 3. 4. 5. 6. 7. 8. 9.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> , Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i>	ER READING 2051 Microcont uter Hardware proprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip	G MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d p architecture" A	Education Ind Book Company Tata McGraw H earson Educatio arson Educatio evelopers guide ddison Wesley	ia, 2006. 7.,1995. lill, 2006 on Asia, n, India, e", Morg	2001. 2000. an Kauffm	an/Elsevier	, 2007.	
REFER 3. 4. 5. 6. 7. 8. 9. 10.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i> Michael J. Pont, " <i>Emb</i>	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip redded C", Add	G MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 ad Interfacing", T procontrollers", Pe architecture", Pe , "ARM system d o architecture" A lison Wesley, 200	Education Ind Book Company Tata McGraw H earson Education arson Education evelopers guided ddison Wesley 2.	ia, 2006. 7.,1995. lill, 2006 on Asia, n, India, e", Morg. , Reprint	2001. 2000. an Kauffm , 2012.	an/Elsevier	, 2007.	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i> Michael J. Pont, " <i>Emb</i> David Seal, " <i>ARM Arc</i> Satish Shah," 8051 M	ER READING 2051 Microcont uter Hardware roprocessor an n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip redded C", Add chitecture Refer	G MATERIAL trollers", Pearson ", McGraw Hill 1 ad Interfacing", T procontrollers", Pe architecture", Pe , "ARM system d p architecture" A lison Wesley, 200 rence Manual", P	Education Ind Book Company Cata McGraw H earson Educatio arson Educatio evelopers guide ddison Wesley 2. earson Educati	ia, 2006. 7.,1995. Iill, 2006 on Asia, n, India, e ["] , Morg , Reprint on, 2007	2001. 2000. an Kauffm , 2012.			
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> , Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i> Michael J. Pont, " <i>Emb</i> David Seal, " <i>ARM Arc</i> Satish Shah," 8051 M 2010.	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip wedded C", Add chitecture Refer icrocontrollers	G MATERIAL rollers", Pearson ", McGraw Hill 1 ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d o architecture" A bison Wesley, 200 rence Manual", P - Mcs 51 family	Education Ind Book Company Pata McGraw H earson Educatio arson Educatio evelopers guida ddison Wesley 2. earson Educati and its variant.	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor	2001. 2000. an Kauffm , 2012. d Universi			
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> , Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i> Michael J. Pont, " <i>Emb</i> David Seal, " <i>ARM Arc</i> Satish Shah," 8051 M 2010. "ARM education webl	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip wedded C", Add chitecture Refer icrocontrollers	G MATERIAL rollers", Pearson ", McGraw Hill 1 ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d o architecture" A bison Wesley, 200 rence Manual", P - Mcs 51 family	Education Ind Book Company Yata McGraw H earson Education evelopers guide ddison Wesley 2. earson Education and its variant.	ia, 2006. 7.,1995. [ill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor	2001. 2000. an Kauffm , 2012. d Universi ion-kits}			
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i> Michael J. Pont, " <i>Emb</i> David Seal, " <i>ARM Arc</i> Satish Shah," 8051 M 2010. "ARM education webl nature	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add chitecture Refer icrocontrollers ink" {https://w	G MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 ad Interfacing", T procontrollers", Pe architecture", Pe , "ARM system d o architecture" A tison Wesley, 200 rence Manual", P - Mcs 51 family www.arm.com/res	Education Ind Book Company Tata McGraw H earson Education evelopers guided ddison Wesley 2. earson Education and its variant. purces/education Theory	ia, 2006. 7.,1995. [ill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor	2001. 2000. an Kauffm , 2012. d Universi ion-kits}			
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, " <i>Microcomp</i> Douglas V. Hall, " <i>Mic</i> John Peatman, " <i>Desig</i> Steve Furber, " <i>ARM S</i> Andrew N Sloss, Sym Steve Furber, " <i>ARM S</i> Michael J. Pont, " <i>Emb</i> David Seal, " <i>ARM Arc</i> Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory	ER READING 2051 Microcont uter Hardware roprocessor an n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add chitecture Refer icrocontrollers ink" {https://w	G MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 <i>ind Interfacing</i> ", T <i>trocontrollers</i> ", Pe <i>architecture</i> ", Pe <i>, "ARM system d</i> <i>o architecture</i> " A <i>lison Wesley</i> , 200 <i>trence Manual</i> ", P <i>- Mcs 51 family</i> ww.arm.com/res Weightage 50%	Education Ind Book Company Cata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. purces/education Theory -	ia, 2006. <i>i.</i> , 1995. (iill, 2006 on Asia, n, India, <i>e</i> ", Morg , Reprint on, 2007 <i>s</i> " Oxfor on/educat + Practio	2001. 2000. an Kauffm , 2012. d Universi ion-kits} cal	ty press,1 st	edition	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessn In-	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Assessment tool	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add hitecture Refer icrocontrollers ink" {https://w	MATERIAL <i>rollers</i> ", Pearson ", McGraw Hill 1 <i>id Interfacing</i> ", T <i>rocontrollers</i> ", Pe <i>architecture</i> ", Pe <i>, "ARM system d</i> <i>o architecture</i> " A <i>lison Wesley</i> , 200 <i>rence Manual</i> ", P <i>- Mcs 51 family</i> ww.arm.com/ress Weightage 50% [Cycle test II]	Education Ind Book Company Tata McGraw H earson Education evelopers guided ddison Wesley 2. earson Education and its variant. purces/education Theory	ia, 2006. 7.,1995. [ill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor	2001. 2000. an Kauffm , 2012. d Universi ion-kits} cal		edition Total	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessn	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig: Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Assessment tool	ER READING 2051 Microcont uter Hardware roprocessor an n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add chitecture Refer icrocontrollers ink" {https://w	G MATERIAL <i>trollers</i> ", Pearson ", McGraw Hill 1 <i>ind Interfacing</i> ", T <i>trocontrollers</i> ", Pe <i>architecture</i> ", Pe <i>, "ARM system d</i> <i>o architecture</i> " A <i>lison Wesley</i> , 200 <i>trence Manual</i> ", P <i>- Mcs 51 family</i> ww.arm.com/res Weightage 50%	Education Ind Book Company Tata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. ources/educatio Theory - Cycle Test III 15%	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor on/educat + Practic Surprise 5%	2001. 2000. an Kauffm , 2012. d Universi d Universi ion-kits } cal	ty press,1 st Quiz 5%	edition Total 50%	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessm In-	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Assessment tool	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add hitecture Refer icrocontrollers ink" {https://w	MATERIAL <i>rollers</i> ", Pearson ", McGraw Hill 1 <i>id Interfacing</i> ", T <i>rocontrollers</i> ", Pe <i>architecture</i> ", Pe <i>, "ARM system d</i> <i>o architecture</i> " A <i>lison Wesley</i> , 200 <i>rence Manual</i> ", P <i>- Mcs 51 family</i> ww.arm.com/ress Weightage 50% [Cycle test II]	Education Ind Book Company Cata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. purces/education Theory	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor on/educat + Practic Surprise 5%	2001. 2000. an Kauffm , 2012. d Universi d Universi ion-kits } cal	ty press,1 st Quiz 5%	edition Total	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessn In- semest	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Assessment tool	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip wedded C", Add chitecture Refer icrocontrollers ink" {https://w Component (Cycle test I 10%	G MATERIAL rollers", Pearson ", McGraw Hill 1 ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d o architecture" A b architecture" A ison Wesley, 200 rence Manual", P - Mcs 51 family ww.arm.com/ress Weightage 50% Cycle test II 0 15%	Education Ind Book Company Tata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. ources/educatio Theory - Cycle Test III 15% End semeste	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor on/educat + Practic Surprise 5%	2001. 2000. an Kauffm , 2012. d Universi d Universi ion-kits } cal	ty press,1 st Quiz 5%	edition Total 50%	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessm In- semest	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig. Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Assessment tool ter Method – Practice Assessment	ER READING 2051 Microcont uter Hardware roprocessor an n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add chitecture Refer icrocontrollers ink" {https://w 7 Component (Cycle test I 10% cal Component	MATERIAL Trollers", Pearson ", McGraw Hill] ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d o architecture" A dison Wesley, 200 rence Manual", P - Mcs 51 family ww.arm.com/res Weightage 50% Cycle test II 15%	Education Ind Book Company Tata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. Durces/educatio Theory - Cycle Test III 15% End semesto %)	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor on/educat + Practic Surprise 5% er exami	2001. 2000. an Kauffm , 2012. d Universi ion-kits} cal e Test 6 nation Wa	ty press,1 st Quiz 5%	edition Total 50% 50%	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessn In- semest	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig, Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Key Keightage nent Method – Practic Assessment tool	ER READING 2051 Microcont uter Hardware roprocessor ar n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip wedded C", Add chitecture Refer icrocontrollers ink" {https://w Component (Cycle test I 10%	G MATERIAL rollers", Pearson ", McGraw Hill 1 ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d o architecture" A b architecture" A ison Wesley, 200 rence Manual", P - Mcs 51 family ww.arm.com/ress Weightage 50% Cycle test II 0 15%	Education Ind Book Company Pata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. Durces/educatio Theory -) Cycle Test III 15% End semester %)	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor on/educat + Practic Surprise 5% er exami	2001. 2000. an Kauffm , 2012. d Universi ion-kits} cal e Test 6 nation Wa	ty press,1 st Quiz 5% eightage :	edition Total 50%	
REFER 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Course Assessm In- semest	ENCE BOOKS/OTH Mazidi and Mazidi, "8 Peatman, "Microcomp Douglas V. Hall, "Mic John Peatman, "Desig, Steve Furber, "ARM S Andrew N Sloss, Sym Steve Furber, "ARM S Michael J. Pont, "Emb David Seal, "ARM Arc Satish Shah," 8051 M 2010. "ARM education webl nature nent Method – Theory Key Keightage nent Method – Practic Assessment tool	ER READING 2051 Microcont uter Hardware roprocessor an n with PIC Mic ystem-on-chip es.D, Wright.C ystems-on-Chip edded C", Add chitecture Refer icrocontrollers ink" {https://w 7 Component (Cycle test I 10% cal Component	MATERIAL Trollers", Pearson ", McGraw Hill] ad Interfacing", T rocontrollers", Pe architecture", Pe , "ARM system d o architecture" A dison Wesley, 200 rence Manual", P - Mcs 51 family ww.arm.com/res Weightage 50% Cycle test II 15%	Education Ind Book Company Tata McGraw H earson Educatio evelopers guide ddison Wesley 2. earson Educatio evelopers guide ddison Wesley 2. earson Educatio and its variant. Durces/educatio Theory - Cycle Test III 15% End semesto %)	ia, 2006. 7.,1995. fill, 2006 on Asia, n, India, e", Morg , Reprint on, 2007 s" Oxfor on/educat + Practic Surprise 5% er exami	2001. 2000. an Kauffm , 2012. d Universi ion-kits} :al 6 nation Wa 6 Mage (exam)	ty press,1 st Quiz 5% eightage :	edition Total 50% 50%	

15EE306M		Multi Disciplinary Design						
Co-requisite:				4	4	U	5	
Prerequisite:								
Data Book / Codes/Standards								
Course Category	Р	PROFESSIONAL CORE						
Course designed by	Department of	Electrical and Electronics Engineer	ring					
Approval	32 nd Academic	Council Meeting, 2016						

PURPOSE	Students of any specialization at an undergraduate level learn courses related to various sub- domains (Multi-disciplinary) of their specialization individually. They are not exposed to understanding how the various multi-disciplinary fields interact and integrate in real life situations. It is very common that an expert in a particular domain models and designs systems or products oblivious of the impact of other subsystems. This lack of multi-disciplinary thinking is very blatantly visible when the students take up their major project during their final year. This course aims to develop appropriate skills on systemic thinking on how to identify and formulate a problem, decompose the problem into smaller elements, coneptualise the design, evaluate the conceptual design by using scientific, engineering and managerial tools, select, analyze and interpret the data, consideration of safety, socio-politico-cultural, risks and hazards, disposal, regional and national laws, costing and financial model and undertake documentation and finally presentation.
---------	---

INST	RUCTIONAL OBJECTIVES	S	STUD	ENT	OUTCOMES			
At the	At the end of the course, student will be able							
1.	To subdivide a complex system into smaller disciplinary models, manage their interfaces and reintegrate them into an overall system model	а	c	e	f	i	1	
2.	To rationalize a system architecture or product design problem by selecting appropriate design variables, parameters and constraints	а	c	e	f	i	1	
3.	To design for value and quantitatively assess the expected lifecycle cost of a new system or product	а	c	e	f	i	1	
4.	To take on the challenges of teamwork, prepare a presentation in a professional manner, and document all aspects of design work.	а	с	e	f	i	1	

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
1	Introduction: Facilitating Multidisciplinary Projects				
2	Identifying and formulating a problem				
3	System Modelling				
4	Thinking perspectives: Decomposition– Composition Thinking Hierarchical Thinking, Organizational Thinking, Life-Cycle Thinking, Safety Thinking, Risk Thinking, Socio-politico- cultural thinking, Environment thinking				
5	Decomposing a system– Identifying the major sub- systems				
6	Mathematical Modeling and Governing equations for each sub systems		C,D,I,O	1,2,3,4	
7	Objectives, Constraints and Design Variables				
8	Conceptual Design				
9	Collaborative Design – Disciplinary teams satisfy the local constraints while trying to match the global constraints set by the project coordinator.				
10	Tools for modeling, designing, analysis, data interpretation, decision making etc				
11	Design Analysis, evaluation and selection		1		
12	Costing and Financial model				
13	Documentation, reviewing and presentation				
	Total contact hours	60			

RESOURCES
REFERENCES
Systems Design and Engineering: Facilitating Multidisciplinary Development Projects
G. Maarten Bonnema, Karel T. Veenvliet, Jan F. Broenink December 15, 2015, CRC Press ISBN
9781498751261
Exploring Digital Design-Multi-Disciplinary Design Practices, Ina Wagner, Tone Bratteteig,
Dagny Stuedahl, Springer-Verlag London, 2010, ISSN:1431-1496
Additional references can be included by the respective departments based on the domain and /
or theme.

Course nature Predominantly complimented by the						Practice y		
Assessment Method (Weightage 100%)								
In compaton	Assessment tool	Review 1	Review 2	Review 3	Review 4	Total		
In-semester	Weightage	10%	25%	25%	40%	100%		
End semester examination Weightage :					0%			

Pedagogy:

Theme or major/broad domains will be announced by the department every semester. Multi-disciplinary designs will be made by the students in groups (group size may be decided by the course coordinator), with the topic of interest falling within the theme or major/broad domains as announced by the department, applying any combinations of the disciplines in engineering. 3D modelling and/or simulation must be used to validate the design.

In a combination of lecture and hands-on experiences, students must be exposed to understand and analyse engineering designs (or products) and systems, their realization process and project management. Analysis of the design criteria for safety, ergonomics, environment, life cycle cost and sociological impact is to be covered. Periodic oral and written status reports are required. The course culminates in a comprehensive written report and oral presentation. If required guest lecturers from industry experts from the sub-domains may be arranged to provide an outside perspective and show how the system design is being handled by the industry. The Conceive Design Implement Operate (CDIO) principles must be taught to the students.

A full-scale fabrication is not within the purview/scope of this course. Of course this design, if scalable and approved by the department, can be extended as the major project work

This course is 100% internal continuous assessment.

15EE375L		Minor Project 1	[L	Т	Р	С	
					0	3	2	
Co-requisite:								
Prerequisite:								
Data Book /								
Codes/Standards								
Course Category	Р	PROFESSIONAL						
Course designed by	Departme	Department of Electrical and Electronics Engineering						
Approval	32 nd Aca	32 nd Academic Council Meeting, 2016						

PU		To obtain an hands-on experience in converting a small novel idea / technique into a working model / prototype involving multi-disciplinary skills and / or knowledge and working in at team.								
INSTRUCTIONAL OBJECTIVES			UDE	NT	NT OUTCOMES					
At th	ne end of the course, student will be able									
1.	To conceptualise a novel idea / technique into a product	с								
2.	To think in terms of multi-disciplinary environment		d							
3.	To understand the management techniques of implementing a project				k					
4.	To take on the challenges of teamwork, prepare a presentation in a profession	onal		g						
	manner, and document all aspects of design work.									

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
1.	An Multidisciplinary project to be taken up by a team of maximum of ten students. Development of prototype product, a 3D model, simulation, blueprint for a larger project and any other development work are permitted. The contribution of the individuals in the project should be clearly brought out. A combined report is to be submitted. A presentation is to be made for the reviewers on the work done by the candidate.		C,D,I	1,2,3,4	
	Total contact hours				

Course nature Project – 100% internal continuous				
Assessment Method (Weightage 100%)				
In-semester	Assessment tool	Refer the table	Total	
	Refer the table below	100%		
End semester	examination Weighta	age :	0%	

Assessment components

Assessment	Expected outcome	Evaluators	Criteria or basis	Marks
component				
Project proposal (Review – I)	A short presentation to be delivered on:	Panel of reviewers	Viability / feasibility of the project	0
	 A brief, descriptive project title (2-4 words). This is critical! The 3 nearest competitors (existing solutions) and price. Team members name, phone number, email, department/degree program, and year. A description of the product opportunity that has been identified. To include: Documentation of the market need, shortcomings of existing competitive products, and definition of the target market and its size. Proposed supervisor/ guide 		Extent of preliminary work done.	

Review II	Mission Statement / Techniques	Panel of reviewers	Originality, Multi-	20
	• Concept Sketches, Design		disciplinary	
	Specifications / Modules &		component, clarity of	
	Techniques along with System		idea and	
	architecture		presentation, team	
	Coding		work, handling	
	Ũ		Q&A.	
Review III	• Final Concept and Model /	Panel of reviewers	Originality, Multi-	50
	Algorithm/ Technique		disciplinary	
	• Drawings, Plans / programme		component, clarity of	
	output		idea and	
	• Financial Model / costing		presentation, team	
	Prototype / Coding		work, handling	
	• Final Presentation and		Q&A.	
	Demonstration			
Final technical	A good technical report	Supervisor / Guide	Regularity,	30
Report		-	systematic progress,	
-			extent of work and	
			quality of work	
			Total	100

15EF376L	Minor Project II			Р	С	
13145701		0	0	3	2	
Co-requisite:						
Prerequisite:						
Data Book /						
Codes/Standards						
Course Category	P PROFESSIONAL					
Course designed by	Department of Electrical and Electronics Engineering					
Approval	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To obtain an hands-on experience in converting a small novel idea / technique into a working model / prototype involving multi-disciplinary skills and / or knowledge and working in at team.								
INS	INSTRUCTIONAL OBJECTIVES STUDENT OUTC						TCC)MI	ES
At t	At the end of the course, student will be able								
5.	5. To conceptualise a novel idea / technique into a product		с						
6.	To think in terms of multi-disciplinary environment			d					
7.	7. To understand the management techniques of implementing a project					k			
8.	8. To take on the challenges of teamwork, prepare a presentation in a professional				g				
	manner, and document all aspects of design work.				0				

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
2.	An Multidisciplinary project to be taken up by a team of maximum of ten students. Development of prototype product, a 3D model, simulation, blueprint for a larger project and any other development work are permitted. The contribution of the individuals in the project should be clearly brought out. A combined report is to be submitted. A presentation is to be made for the reviewers on the work done by the candidate.		C,D,I	1,2,3,4	
	Total contact hours				

Course nature	Course nature Project – 100% internal continuous assessment				
Assessment Method (Weightage 100%)					
In comostor	Assessment tool	Refer the table	Total		
In-semester	Weightage	Refer the table below	100%		
End semester	examination Weight	age :	0%		

Assessment components

Assessment component	Expected outcome	Evaluators	Criteria or basis	Marks
Project proposal (Review – I)	 A short presentation to be delivered on: A brief, descriptive project title (2-4 words). This is critical! The 3 nearest competitors (existing solutions) and price. Team members name, phone number, email, department/degree program, and year. A description of the product opportunity that has been identified. To include: Documentation of the market need, shortcomings of existing competitive products, and definition of the target market and its size. Proposed supervisor/ guide 	Panel of reviewers	Viability / feasibility of the project Extent of preliminary work done.	0

Assessment component	Expected outcome	Evaluators	Criteria or basis	Marks
Review II	 Mission Statement / Techniques Concept Sketches, Design Specifications / Modules & Techniques along with System architecture Coding 	Panel of reviewers	Originality, Multi- disciplinary component, clarity of idea and presentation, team work, handling Q&A.	20
Review III	 Final Concept and Model / Algorithm/ Technique Drawings, Plans / programme output Financial Model / costing Prototype / Coding Final Presentation and Demonstration 	Panel of reviewers	Originality, Multi- disciplinary component, clarity of idea and presentation, team work, handling Q&A.	50
Final technical Report	A good technical report	Supervisor / Guide	Regularity, systematic progress, extent of work and quality of work	30
			Total	100

15EE380L		Seminar I				Р	С
				0	0	3	2
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL					
Course designed by	Departm	Department of Electrical and Electronics Engineering					
Approval	32 nd Ac	cademic Council Meeting, 2016					

PU	RPOSE	To enhance the disseminating skills of the student about the current and contemporary research work that are being carried out across the world.							
INS	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								ES
At t	At the end of the course, student will be able								
1.	To under	rstand the research methodology adopted by various researchers	h	i	j				
2. To mathematically model a problem, critically analyse it and adopt strategies to solve		b	c	e					
3.	To under	rstand and present a well documented research	e	g					

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	 Guidelines for conducting 15xx390L Seminar for B.Tech 1. Upon registering for the course the student must identify a sub-domain of the degree specialization that is of interest to the student and start collecting research papers as many as possible. 2. After collecting sufficient number of research papers the student must peruse all the papers, meet the course faculty and discuss on the salient aspects of each and every paper. 3. The course faculty, after discussion with the student will approve TWO research papers that is appropriate for presentation. 4. The student must collect additional relevant reference materials to supplement and compliment the two research papers and start preparing the presentation. 5. Each student must present a 15-minute presentation on each of the approved research paper to the panel of evaluators. 6. The presenter must present one research paper in the next half of the semester (6 weeks) as per the schedule. 7. All other students registered for the course will form the audience. 8. The audience as well as the evaluators will probe the student with appropriate for the paper in the presenter. 			1,2,3,4	

Session	Description of Topic	Description of Topic Contact hours		IOs	Reference
	 9. The presentation will be evaluated against 7 to 8 assessment criteria by 4 to 5 evaluators. 10. The score obtained through the presentations of TWO research papers will be converted to appropriate percentage of marks. This course is 100% internal continuous assessment. 				
	Total contact hours				

Course nature	e			100% internal continuous assessment.					
	Assessment Method (Weightage 100%)								
In-semester	Assessment tool	Presentation 1 Presentation 2		Total					
m-semester	Weightage	50%		50%	100%				
End semester	examination Weig	htage :			0%				

Department of EEE EVALUATION OF SEMINAR PRESENTATIONS

Name of	f the Student:			Date:		
Register	Number:		Degree	and Branch:		
Topic:						
Sl. No.	Criteria for Assessment	Evaluator 1	Evaluator 2	Evaluator 3	Evaluator 4	Evaluator 5
1	Understanding of the subject					
2	Clarity of presentation					
3	Appropriate use of Audio visual aids					
4	Whether cross references have been consulted					
5	Ability to respond to questions on the subject					
6	Time scheduling					
7	Completeness of preparation					

Poor	1	Below Average	2	Average	3	Good	4	Very Good	5	
------	---	---------------	---	---------	---	------	---	-----------	---	--

Overall Grades: Remarks:

Signature of Course Coordinator

15EE381L		Seminar II		L 0	Т 0	P 3	C 2
Co-requisite:	NIL						-
Prerequisite:	NIL						-
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONA L					
Course designed by	Department of	epartment of Electrical and Electronics Engineering					
Approval	32 nd Academ	ic Council Meeting, 2016					

PU	RPOSE	To enhance the disseminating skills of the student about the current an work that are being carried out across the world.								
INS	INSTRUCTIONAL OBJECTIVES STUDENT OUT								ES	
At t	At the end of the course, student will be able									
4.	To under	rstand the research methodology adopted by various researchers	h	i	j					
5.	To mathematically model a problem, critically analyse it and adopt strategies to solve				e					
6.	To under	rstand and present a well documented research	e	g						

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	Guidelines for conducting 15xx390L				
	Seminar for B.Tech				
	11. Upon registering for the course the				
	student must identify a sub-domain of				
	the degree specialization that is of				
	interest to the student and start				
	collecting research papers as many as				
	possible.				
	12. After collecting sufficient number of				
	research papers the student must				
	peruse all the papers, meet the course faculty and discuss on the salient				
	aspects of each and every paper.				
	13. The course faculty, after discussion				
	with the student will approve TWO				
	research papers that is appropriate for				
	presentation.				
	14. The student must collect additional				
	relevant reference materials to				
	supplement and compliment the two			1024	
	research papers and start preparing the		C,D	1,2,3,4	
	presentation.				
	15. Each student must present a 15-minute				
	presentation on each of the approved				
	research paper to the panel of				
	evaluators.				
	16. The presenter must present one				
	research paper within the first half of				
	the semester (6 weeks) and another				
	research paper in the next half of the				
	semester (6 weeks) as per the schedule. 17. All other students registered for the				
	course will form the audience.				
	18. The audience as well as the evaluators				
	will probe the student with appropriate				
	questions and solicit response from the				
	presenter.				
	19. The presentation will be evaluated				
	against 7 to 8 assessment criteria by 4				
	to 5 evaluators.				

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	 20. The score obtained through the presentations of TWO research papers will be converted to appropriate percentage of marks. This course is 100% internal continuous assessment. 				
	Total contact hours				

Course natur	Course nature 100% internal continuous assessment.								
	Assessment Method (Weightage 100%)								
In-semester	Assessment tool	Presentation 1	Pre	sentation 2	Total				
	Weightage	50%		50%	100%				
End semester	examination Weig	htage :			0%				

Department of EEEEVALUATIONOF SEMINAR PRESENTATIONS

Name of	f the Student:			Date:		
Register	r Number:		Degree	e and Branch:		
Topic:						
Sl. No.	Criteria for Assessment	Evaluator 1	Evaluator 2	Evaluator 3	Evaluator 4	Evaluator 5
1	Understanding of the subject					
2	Clarity of presentation					
3	Appropriate use of Audio visual aids					
4	Whether cross references have been consulted					
5	Ability to respond to questions on the subject					
6	Time scheduling					
7	Completeness of preparation					
Poor	1 Below Average 2	Average	3 (Good	4 Very G	ood 5

Overall Grades:

Remarks:

Signature of Course Coordinator

15EE385L	Massive Open Online Courses (MOOCs)	[L	Т	Р	С	
			0	0	3	2	
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	P PROFESSIONAL						
Course designed by	Department of Electrical and Electronics Engineering	Department of Electrical and Electronics Engineering					
Approval	32 nd Academic Council Meeting, 2016						

PU	RPOSE	To offer students the opportunity to study with the world's best universe MOOCs in a regular degree programme and providing students full cree university regulations, if they earn a "Verified / Completion Certificate examination through a secure, physical testing center.	edit tra	ans f	er, a	is pe	er		-
INSTRUCTIONAL OBJECTIVES STUDENT OUTCO					м	7S			
ШNЭ	IKUUII	NAL ODJECTIVES	510	שעו	I I	00	IU		20
		he course, student will be able	510					/1/11	20

Course natur	e			Online - 100%	internal continuous	assessment.			
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Quiz	Assignmen t	Non-proctored / Unsupervised Tests	Proctored / Supervised Test	Total			
	Weightage	25%	25%	10%	40%	100%			
End semester examination Weightage :									

Registration process, Assessment and Credit Transfer:

- 1. Students can register for courses offered by approved global MOOCs platforms like edX, Coursera or Universities with which SRM partners specifically for MOOCs.
- 2. Annually, each department must officially announce, to the students as well as to the Controller of Examinations, the list of courses that will be recognised and accepted for credit transfer.
- 3. The department must also officially announce / appoint one or more faculty coordinator(s) for advising the students attached to them, monitoring their progress and assist the department in proctoring the tests, uploading the marks / grades, and collecting and submitting the graded certificate(s) to the CoE, within the stipulated timeframe.
- 4. Student who desires to pursue a course, from the above department-approved list, through MOOCs must register for that course during the course registration process of the Faculty of Engineering and Technology, SRM University.
- 5. The maximum credit limits for course registration at SRM will include the MOOCs course registered.
- 6. The student must periodically submit the marks / grades obtained in various quizzes, assignments, tests etc immediately to the Faculty Advisor or the Course Coordinator for uploading in the university's academic module.
- 7. The student must take the final test as a Proctored / Supervised test in the university campus.
- 8. The student must submit the "Certificate of Completion" as well as the final overall Marks and / or Grade within the stipulated time for effecting the grade conversion and credit transfer, as per the regulations. It is solely the responsibility of the individual student to fulfil the above conditions to earn the credits.
- 9. The attendance for this course, for the purpose of awarding attendance grade, will be considered 100%, if the credits are transferred, after satisfying the above (1) to (7) norms; else if the credits are not transferred or transferable,

15EE390L		Industrial Training I		L 0	Т 0	P 3	C 2
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL CORE					
Course designed by Department of Electrical and Electronics Engineering							
Approval	32 nd , Academ	ic Council Meeting, 2016					

10. the attendance will be considered as ZERO.

-

PU	URPOSE To provide short-term work experience in an Indu	stry/Company/Organisat	ion							
INST	NSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At th	he end of the course, student will be able									
4.	To get an inside view of an industry and organization/compa	ny			j					
5.	To gain valuable skills and knowledge				j					
6.	To make professional connections and enhance networking	f	g							
7.	To get experience in a field to allow the student to make a ca	areer transition		i						

Session	Description of Topic	Contact	C-	IOs	Reference
		hours	D-		
			I-		
			0		
	1. It is mandatory for every student to undergo this course.		D,	1,2,3,4	
	2. Every student is expected to spend a minimum of 15-days in an		I,O		
	Industry/Company/Organization, during the summer vacation.				
	3. The type of industry must be NOT below the Medium Scale category				
	in his / her domain of the degree programme.				
	4. The student must submit the "Training Completion Certificate" issued				
	by the industry / company / Organisation as well as a technical report				
	not exceeding 15 pages, within the stipulated time to be eligible for				
	making a presentation before the committee constituted by the				
	department.				
	5. The committee will then assess the student based on the report				
	submitted and the presentation made.				
	6. Marks will be awarded out of maximum 100.				
	7. Appropriate grades will be assigned as per the regulations.				
	8. Only if a student gets a minimum of pass grade, appropriate credit will				
	be transferred towards the degree requirements, as per the regulations.				
	9. It is solely the responsibility of the individual student to fulfill the				
	above conditions to earn the credits.				
	10. The attendance for this course, for the purpose of awarding attendance				
	grade, will be considered 100%, if the credits are transferred, after				
	satisfying the above (1) to (8) norms; else if the credits are not				
	transferred or transferable, the attendance will be considered as ZERO.				
	11. The committee must recommend redoing the course, if it collectively				
	concludes, based on the assessment made from the report and				
	presentations submitted by the student, that either the level of training				
	received or the skill and / or knowledge gained is NOT satisfactory.				
	Total contact hours				

Course natur	·e		Training – 100% assessment	internal continuous				
	Assessment Method (Weightage 100%)							
In-semester	Assessment tool	Presentation	Report	Total				
	Weightage	80%	20%	100%				
End semeste	End semester examination Weightage :							

15EE386L	Massive Open Online Courses (MOOCs)IILTPC0032
Co-requisite:	NIL
Prerequisite:	NIL
Data Book / Codes/Standards	NIL
Course Category	P PROFESSIONAL
Course designed by	Department of Electrical and Electronics Engineering
Approval	32 nd Academic Council Meeting, 2016

PU	RPOSE	To offer students the opportunity to study with the world's best universe MOOCs in a regular degree programme and providing students full creat university regulations, if they earn a "Verified / Completion Certificate examination through a secure, physical testing center.	edit tra	ansf	er, a	s pe	r		t
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOM						-			
INS	TRUCTIC	ONAL OBJECTIVES	STU	JDE	NT	OU	TCC)MI	ES
		he course, student will be able	STU	JDE	NT	OU	TCC)MI	ES

Course natur	·e			Online - 100% internal continuous assessmen					
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Quiz	Assignmen t	Non-proctored / Unsupervised Tests	Proctored / Supervised Test	Total			
	Weightage	25%	25%	10%	40%	100%			
End semester examination Weightage :									

Registration process, Assessment and Credit Transfer:

- 11. Students can register for courses offered by approved global MOOCs platforms like edX, Coursera or Universities with which SRM partners specifically for MOOCs.
- 12. Annually, each department must officially announce, to the students as well as to the Controller of Examinations, the list of courses that will be recognised and accepted for credit transfer.
- 13. The department must also officially announce / appoint one or more faculty coordinator(s) for advising the students attached to them, monitoring their progress and assist the department in proctoring the tests, uploading the marks / grades, and collecting and submitting the graded certificate(s) to the CoE, within the stipulated timeframe.
- 14. Student who desires to pursue a course, from the above department-approved list, through MOOCs must register for that course during the course registration process of the Faculty of Engineering and Technology, SRM University.
- 15. The maximum credit limits for course registration at SRM will include the MOOCs course registered.
- 16. The student must periodically submit the marks / grades obtained in various quizzes, assignments, tests etc immediately to the Faculty Advisor or the Course Coordinator for uploading in the university's academic module.
- 17. The student must take the final test as a Proctored / Supervised test in the university campus.
- 18. The student must submit the "Certificate of Completion" as well as the final overall Marks and / or Grade within the stipulated time for effecting the grade conversion and credit transfer, as per the regulations. It is solely the responsibility of the individual student to fulfil the above conditions to earn the credits.
- 19. The attendance for this course, for the purpose of awarding attendance grade, will be considered 100%, if the credits are transferred, after satisfying the above (1) to (7) norms; else if the credits are not transferred or transferable,

15EF390L	Industrial Training I L T P C 0 0 3 2
Co-requisite:	NIL
Prerequisite:	NIL
Data Book / Codes/Standards	NIL
Course Category	P PROFESSIONAL CORE
Course designed by	Department of Electrical and Electronics Engineering
Approval	32 nd , Academic Council Meeting, 2016

20. the attendance will be considered as ZERO.

PU	PURPOSE To provide short-term work experience in an Industry/Company/ Organisation										
INST	NSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES										
At th	ne end of th	e course, student will be able									
8.	To get an	inside view of an industry and organization/company				j					
9.	To gain v	aluable skills and knowledge				j					
10.	To make	professional connections and enhance networking	f	g							
11.	To get ex	perience in a field to allow the student to make a career transition			i						

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	 It is mandatory for every student to undergo this course. Every student is expected to spend a minimum of 15-days in an Industry/Company/Organization, during the summer vacation. The type of industry must be NOT below the Medium Scale category in his / her domain of the degree programme. The student must submit the "Training Completion Certificate" issued by the industry / company / Organisation as well as a technical report not exceeding 15 pages, within the stipulated time to be eligible for making a presentation before the committee constituted by the department. The committee will then assess the student based on the report submitted and the presentation made. Marks will be awarded out of maximum 100. Appropriate grades will be assigned as per the regulations. Only if a student gets a minimum of pass grade, appropriate credit will be transferred towards the degree requirements, as per the regulations. It is solely the responsibility of the individual student to fulfill the above conditions to earn the credits. The attendance for this course, for the purpose of awarding attendance grade, will be considered 100%, if the credits are transferred, after satisfying the above (1) to (8) norms; else if the credits are not transferred or transferable, the attendance will be considered as ZERO. The committee must recommend redoing the course, if it collectively concludes, based on the assessment made from the report and presentations submitted by the student, that either the level of training received or the skill and / or knowledge gained is NOT satisfactory. 		D, I,O	1,2,3,4	
	Total contact hours				

Course natur	re		Training – 100% assessment	internal continuous
		ntage 100%)		
In-semester	Assessment tool	Presentation	Report	Total
	Weightage	80%	20%	100%
End semeste	r examination We		0%	

15EE490L/		Industry Module I /		L	Т	Р	С
				0	0	3	2
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL					
Course designed by	Department of	f Electrical and Electronics Engine	ering				
Approval	32 nd Academic	c Council Meeting, 2016					

PU	RPOSE To impart an insight into the current industrial trends and practices							
INS	FRUCTIONAL OBJECTIVES	STUDENT OUTCOM						ES
At tl	At the end of the course, student will be able							
1.	To obtain an insight into the current industrial trends and practices			j				
2.	To obtain an insight into the technologies adopted by industries			j				
3.	To obtain an insight into the technical problems encountered by the industries and the scope for providing solutions.		h					
4.	To network with industry	g						

Des	scription of Topic	Contact hours	C-D-I-O	IOs	Reference
1.	The department will identify and shortlist few emerging topics that are trending in industry.				
2.	The department will identify experts from industry who are willing to deliver modules on the shortlisted topics.				
3.	The identified expert will assist the department in formulating the course content to be delivered as a 30-hour module, prepare lectures notes, ppt,				
	handouts and other learning materials.				
4.	The department will arrange to get the necessary approvals for offering the course, from the university's statutory academic bodies well before				
	the actual offering.				
5.	The department must officially announce, to the students as well as to the Controller of Examinations, the list of courses that will be offered as				
	industry module.				
6.	The department must also officially announce/appoint one or more faculty coordinator(s) for advising the students attached to them, monitoring their progress and assist the department in		C,D,I,O	1,2,3,4	
	proctoring/supervising/assessment the quizzes, assignments, tests etc, uploading the marks, attendance etc, within the stipulated timeframe.				
7.	The Student who desires to pursue a course, from the above department- approved list, must register for that course during the course registration process of the Faculty of Engineering and Technology, SRM University.				
8.	The maximum credit limits for course registration at SRM will include the Industry Module also.				
9.	All academic requirements of a professional course like minimum attendance, assessment methods, discipline etc will be applicable for this				
	Industry Module.				
10.	The course will be conducted on week ends or beyond the college regular				
	working hours.				
	Total contact hours	30			

Course natu	ire			100%	100% internal continuous assessment.				
Assessment Method – Theory Component (Weightage 50%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test II	I Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage									

15EE491L		Industry Module II		L 0	Т 0	P 3	C 2
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL					
Course designed by	Department of	Electrical and Electronics Engine	ering				
Approval	32 nd Academic	Council Meeting, 2016					

PU	RPOSE To impart an insight into the current industrial trends and practices								
INS	TRUCTIONAL OBJECTIVES	STUDENT OUTO				TCC	COMES		
At t	he end of the course, student will be able								
5.	To obtain an insight into the current industrial trends and practices			j					
6.	To obtain an insight into the technologies adopted by industries			j					
7.	To obtain an insight into the technical problems encountered by the industries and the scope for providing solutions.		h						
8.	To network with industry	g							

Desc	cription of Topic	Contact hours	C-D-I-O	IOs	Reference
	The department will identify and shortlist few emerging topics that are				
	trending in industry.				
	The department will identify experts from industry who are willing to				
	deliver modules on the shortlisted topics.				
	The identified expert will assist the department in formulating the course				
	content to be delivered as a 30-hour module, prepare lectures notes, ppt,				
	handouts and other learning materials.				
	The department will arrange to get the necessary approvals for offering				
	the course, from the university's statutory academic bodies well before				
	the actual offering.				
	The department must officially announce, to the students as well as to the				
	Controller of Examinations, the list of courses that will be offered as				
	industry module.				
	The department must also officially announce/appoint one or more		C,D,I,O	1,2,3,4	
	faculty coordinator(s) for advising the students attached to them,		0,2,1,0	1,_,0, 1	
	monitoring their progress and assist the department in				
	proctoring/supervising/assessment the quizzes, assignments, tests etc,				
	uploading the marks, attendance etc, within the stipulated timeframe.				
	The Student who desires to pursue a course, from the above department-				
	approved list, must register for that course during the course registration				
	process of the Faculty of Engineering and Technology, SRM University.				
	The maximum credit limits for course registration at SRM will include				
	the Industry Module also.				
	All academic requirements of a professional course like minimum				
	attendance, assessment methods, discipline etc will be applicable for this				
	Industry Module.				
	The course will be conducted on week ends or beyond the college regular				
	working hours.				
	Total contact hours	30			

Course natu	Course nature 100% internal continuous assessment.								
Assessment Method – Theory Component (Weightage 50%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage									

15EE401		Solid State Drives			Т 0	P 0	C 3
Co-requisite:	Nil						
Prerequisite:	15EE	204, 15EE210, 15EE301J					
Data Book / Codes/Standards	Nil						
Course Category	Р	PROFESSIONAL CORE	ELECTRONICS				
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32 nd	2 nd Academic Council Meeting, 2016					

	PURPOSE	To acquire a comprehensive knowledge on solid state of of electric drives.	drives,	digita	al con	trol an	id app	olicat	ions
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At the	e end of the cour	se, the student will be able to							
1.	Understand the load system	steady state operation and transient dynamics of motor-	a		e				
2.	Learn the chara	cteristics and control of solid state DC and AC drives	а		e				
3.	Learn digital co	ontrol and applications of electric drives	а	c	e	h	j		

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: CLASSIFICATION OF ELECTRIC DRIVES	9			
1.	Electric Drives-Selection of motor power rating	2	С	1	1,2
2.	Thermal model of motor for heating and cooling	2	С	1	1,2
3.	Classes of duty cycle- Determination of motor rating	1	С	1	1,2
4.	Drive classifications – Closed loop control of electric drives	2	C	1	1
5.	Modes of operation - Speed control	2	С	1,2	1,2
	UNIT II: SOLID STATE CONTROL OF DC DRIVES	9			
6.	DC Motor Drives - DC motors and their performance, Braking, Transient analysis	2	C	2	1,2
7.	Separately excited motor with armature and field control	2	С	2	1,2,3
8.	Ward Leonard drives-Transformer and uncontrolled rectifier control	1	C	2	1
9.	Controlled rectifier fed DC drives	2	С	2	1,2,3
10.	Chopper controlled DC drives – Single, two and four quadrant operations.	2	C	2	1,2,3
	UNIT III: SOLID STATE CONTROL OF INDUCTION MOTOR DRIVE	9			
11.	Induction motor drives -Stator control, Stator voltage and frequency control	2	C	2	1,2,3
12.	AC chopper fed induction motor drives	1	С	2	1,3,4
13.	Voltage source inverter- current source inverter - Z – source inverter fed induction motor drive	2	C	2	1,3,4
14.	Cyclo-converter fed induction motor drives	1	С	2	1,3,4
15.	Rotor control	1	С	2	1,2
16.	Static rotor resistance control and slip power recovery schemes matrix from element stiffness	2	C	2	1,2,3
	UNIT IV: SOLID STATE CONTROL OF SYNCHRONOUS MOTOR DRIVE	9			
17.	Synchronous motor drives	2	С	2	1,2,3
18.	Speed control of three-phase synchronous motor drives	2	C	2	1,2,3
19.	Voltage source inverter and current source inverter fed synchronous motor drive	2	C	2	1,3,4
20.	Z - source inverter fed synchronous motor drive	1	С	2	4

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference	
21.	Cyclo-converter fed synchronous motor drive	2	С	2	1,3	
	UNIT V: DIGITAL CONTROL OF DRIVES AND ITS APPLICATIONS	9				
22.	Digital technique in speed control-Advantages and Limitations	1	С	3	3	
23.	Microprocessor based control of drives	2	С	3	3	
24.	Solar powered pump drives	2	С	3	1	
25.	Selection of drives and control schemes for paper mills	2	C,D	3	3	
26.	Selection of drives for lifts and cranes	2	С	3	3	
	Total contact hours	45				

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
13.	G.K. Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House Pvt. Ltd., 2 nd Edition, 2010
14.	Pillai.S.K., "A First Course on Electrical Drives", New Age International (P) Ltd., 2 nd Edition, 2015
REFERE	ENCE BOOKS/OTHER READING MATERIAL
15.	Vedam Subramanyam, "Thyristor control of Electrical Drives", Mc Graw Hill Education (India) Pvt. Ltd.,
	3 rd Edition, 2015
16.	Bimal K.Bose "Modern Power Electronics and AC Drives", Prentice Hall of India, 2 nd Edition, 2010

Course nature				Theory							
Assessment Method (Weightage 100%)											
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total				
	Weightage	10%	15%	15%	5%	5%	50%				
End semester examination Weightage :											

15EE401L		Electric Drives Laboratory					C 2
Co-requisite:	15E	E401					
Prerequisite:	NIL						
Data Book /	NIL						
Codes/Standards		1					
Course Category	Р	PROFESSIONAL CORE	ELECTRONICS				
Course designed by	Dep	Department of Electrical and Electronics Engineering					
Approval	32nd	Academic Council Meeting, 2016					

]	PURPOSE	OSE To acquire training and skills on the hardware programming and control of power electronics circuit based motor control									
INST	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES										
At the	e end of the cour	se, the student will be able to									
1. To learn about control of power electronic converters and motors			а	b	e						
2.	To acquire skills in FPGA and DSP processors a b e h k										

Sl. No.	Description of experiments	Contact hours	C-D-I-O	IOs	Reference
1.	FPGA based DC Motor control using DC Chopper	6	D,I,O	1,2	1,2
2.	Braking of DC Motorusing FPGA based DC Chopper	6	D,I,O	1,2	1,2
3.	DSP based servo motor position control system	3	D,I,O	1,2	1,2
4.	FPGA based PWM control of three-phase voltage source inverter fed induction motor drive	6	D,I,O	1,2	1,3
5.	Open loop and closed loop v/f control of 3-phase induction motor	3	D,I,O	1,2	1,3
6.	AC voltage controller based speed reversal of three- phase induction motor drive	3	D,I,O	1,2	1,3
7.	Rotor resistance control of three-phase slip ring induction motor using Chopper	3	D,I,O	1,2	1,3
8.	DSP based PWM control of three- phase Z source inverter fed induction motor drive	6	D,I,O	1,2	1,3
	Total contact hours	36			

LEARN	LEARNING RESOURCES							
Sl. No.	REFERENCES							
1.	Electric Drives-Laboratory Manual							
2.	Dubey.G.K, "Fundamentals of Electrical drives", Narosa Publishing House Pvt. Ltd., Second Edition,							
	2010.							
3.	Bose.B.K, "Modern Power Electronics and AC drives", McGraw Hill, Second Edition, 2010.							

Course nature	Course nature Practical								
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total			
	Weightage	40%	5%	5%	10%	60%			
End semester examination Weightage :									

15EF402		Power System Operation and Control			Т 0	Р 0	C 3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	Professional Core	POWER SYSTEMS				
Course designed by	Department of Electrical and Electronics Engineering						
Approval	32nd	Academic Council Meeting , 2016					

PURPOSE To gain knowledge in the operation and control of power systems and to learn the modern computer control in power systems									1
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At th	ne end of the cou	rse, student will be able to							
1.	Learn the basic	cs of power system control	a						
2.	Control the fre	quency and voltage of power system	а	e					
3.	Understand the	e economic operation of power system	а	e	h	j			
4.	Realize the mo	dern computer control in power system	а	e	h	j			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: REAL POWER FREQUENCY CONTROL	9			
1.	Basic concepts of operation and control of power system, Plant and systemlevel control	1	С	1	1,3,4
2.	Modeling of speed governing mechanisms	1	С	1	1,3,4
3.	Speed load characteristics- regulation of two alternators in parallel	1	С	1	1,3,4
4.	Control area concept-single area frequency control-modeling	1	С	1,2	1,3,4
5.	Steady state and dynamic response of single area system- state space model for single area	2	С	1,2	1,3,4
6.	Two area frequency control modeling-proportional plus integral controllers- block diagram representation	2	С	1,2	1,3,4
7.	Static and dynamic response of two area system- Economic dispatch added to LFC control.	1	С	1,2	1,3,4
	UNIT II: REACTIVE POWER CONTROL	8			
8.	Production and absorption of reactive power	1	С	2	1,2,3
9.	Types of Excitation systems (DC, AC, Static and brushless) – mathematical model of IEEE type I	2	С	2	1,2,3
10.	Methods of voltage control (shunt reactors, shunt capacitors, synchronous condensers, static var systems, tap changing transformers)	3	С	2	1,2,3
11.	Load compensation	2	С	2	1,2,3
	UNIT III: ECONOMIC OPERATION OF POWER SYSTEM	10			
12.	Optimal operation of Generators in Thermal Power Stations – heat rate Curve – Cost Curve	1	С	3	3,4,5
13.	Incremental fuel and Production costs, input-output characteristics, Optimum generation allocation with line losses neglected	2	С	3	3,4,5
14.	Optimum generation allocation including the effect of transmission line losses – Loss Coefficients, General transmission line loss formula	3	С	3	3,4,5
15.	Base point and participation factors	2	С	3	3,4,5
16.	Classical economic dispatch by gradient method	1	С	3	3,4,5
17.	Concept of Security constrained economic dispatch by linear programming	1	С	3	3,4,5
	UNIT IV: UNIT COMMITMENT AND OPTIMAL POWER FLOW	9			
18.	Statement of unit commitment- constraints	1	С	3	3,4
19.	Priority method (quantitative analysis)	2	С	3	3,4
20.	Dynamic programming (quantitative analysis)	2	С	3	3,4
21.	Lagrange relaxation method (qualitative analysis)	1	С	3	3,4
22.	OPF problem formulations	1	С	3	3,4
23.	Newton's method of OPF neglecting security constraints.	2	С	3	3,4
	UNIT V: COMPUTER CONTROL OF POWER SYSTEMS	9			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
24.	Concept of energy control centre- monitoring, data acquisition and control	2	C	4	3,6,7
25.	SCADA and EMS configurations	1	С	4	3,6,7
26.	PLC architecture and communication links	2	С	4	3,6,7
27.	Operating strategies, state transition diagram	1	C	4	3,6,7
28.	State estimation by weighted least square method	1	C	4	3,6,7
29.	Introduction to phasor measurement units	1	С	4	3,6,7
30.	Integration, control and operation of distributed generation	1	С	4	3,6,7
	Total contact hours				

LEARNIN	IG RESOURCES
Sl.No	TEXT BOOKS
1.	Olle.I.Elgerd, "Electric Energy systems theory- An Introduction", Tata Mc Graw Hill publishing Ltd,
	New Delhi, 2008
2.	I.J.Nagrath and D.P.Kothari, "Power system engineering", 2nd edition, Tata Mc Graw Hill publishing
	Ltd, 2008.
3.	John J.Grainger, William D. Stevenson, "Power system analysis", McGraw Hill series, 1994
REFEREN	NCE BOOKS
4.	Prabha Kundur, "Power system stability and control", Tata Mc Graw Hill publishing Ltd, New Delhi, 5th
	reprint, 2008.
5.	Allen J.Wood and Bruce F. Woollenburg, "Power generation, operation and control", 2nd edition, John
	Wiley and sons, 1996
6.	M.E. El-Hawary, G.S. Christensen, "Optimal Economic Operation of Electric Power Systems", Academic
	Press (1979)
7.	E. Mariani, S.S. Murthy, "Control of Modern Integrated Power Systems", Springer, 1997

Course natur	re			Theory						
Assessment	Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
	End semester examination Weightage : 50									

	15EE403L Power Sy	ystems Laboratory			0	L	T)	3	Р	C 2
Co-req	uisite: 15EE402				-			-		
Prereq										
Data B	ook/									
	Standards									
	P Professional core	PO	OWER SYS	ГEMS	•					
	e designed by Department of EEE									
Approv	22 Academic Council Mee	ting , 2016								
PURPO	DSE To develop skills in simulation software studies.	s and conducting e	xperiments 1	elated	l to	o pov	ver s	yst	tem	
INSTR	UCTIONAL OBJECTIVES						TU TC(
At the	end of the course, student will be able to									
1. Ac	equire skills of using computer packages for powe	er systemstudies.		2	ı	be	e ł	1	k	
2. Ac	equire knowledge in conducting experiments relat	ed to power syster	nstudies	8	ı	b	e ł	1	k	
SI.	Description of experiments	Contact hours	C-D-I-O	IO	S		Re	efer	enc	e
No.			0210							
	SIMULATION STUDIES	18								
1.	Power flow solution-Gauss seidal, Newton Raphson and FDLF	3	C-D	1			1,3			
2.	Zbus building algorithm	3	C-D	1				1,		
3.	Contingency analysis	3	C-D	1				1,	3	
4.	MVAR Compensation studies on normal and heavily loaded power systems	3	C-D	1				1,	3	
5.	Steady state and dynamic response of LFC in single area system	3	C-D	1			1,2			
6.	Transient stability analysis of DFIG based wind system	3	C-D	1				1,	3	
	HARDWARE	27								
7.	Perform series and shunt compensation and determine A, B,C,D constants of transmission line	3	C-D-I-O	2				1,	3	
8.	Characteristics of under-voltage and over-voltage relays	ge 3	C-D-I-O	2				1	-	
9.	SCADA- data acquisition and data logging	3	C-D-I-O	2				1		
10.	Energy metering	3	C-D-I-O	2			1			
11.	Location of fault in a cable	3	C-D-I-O	2			1			
12.	Emulation of wind turbine characteristics	3	C-D-I-O	2				1		
13.	Performance analysis of PV module	3	C-D-I-O	2				1		
14.	Determination of power factor and total harmonic distortion associated with power electronics interface	3	C-D-I-O	2				1		
15.	Performance and testing of transformer protection system	3	C-D-I-O				1			
	protection by stem									

LEARN	ING RESOURCES
Sl. No.	REFERENCES
1.	Laboratory Manual
2.	Olle.I.Elgerd, "Electric Energy systems theory- An Introduction", Tata Mc Graw Hill publishing Ltd, New
	Delhi, 2008
3.	D.P.Kothari, I.J.Nagrath, "Modern Power System analysis", 4th Edition, Mc Graw Hill, 2011

Course nature	2			Practical			
Assessment M	lethod (Weightage	100%)					
In-semester	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total	
	Weightage	40%	5%	5%	10%	60%	
	End semester examination Weightage : 4						

15EE496L		Major Project		L 0	Т 0	P 24	C 12
Co-requisite:							
Prerequisite:							
Data Book /							
Codes/Standards							
Course Category	Р	PROFESSIONAL CORE					
Course designed by	Department of	f Electrical and Electronics Enginee	ering				
Approval	32 nd Academic	c Council Meeting, 2016					

PU	RPOSE	The Major Project experience is the culminating academic endeavorous in their Undergraduate Programs. The project provides students with problem or issue of particular personal or professional interest and to a through focused study and applied research under the direction of a f demonstrates the student's ability to synthesize and apply the knowl his/her academic program to real-world issues and problems. This fin ability to think critically and creatively, to solve practical problems, to decisions, and to communicate effectively.	the op ddres aculty edge nal pr	opor s tha me and ojec	tuni at pro mbe skil skil	ty to oble r. T lls a firms	o exp m o The p cqui	olore r iss oroje red ider	e a sue ect in nts'	
INS	TRUCTIO	DNAL OBJECTIVES	SΤ	DE	NT	OU	TCC)MI	ES	
At t	At the end of the course, student will be able									
1.	-	ide students with the opportunity to apply the knowledge and skills I in their courses to a specific problem or issue.							i	
	To allow	y students to extend their academic experience into greas of personal								

	acquired in their courses to a specific problem or issue.		-		-			
2.	To allow students to extend their academic experience into areas of personal	а	с		е	f		i
2.	interest, working with new ideas, issues, organizations, and individuals.	4	Ũ		C	1		1
	To encourage students to think critically and creatively about academic,							
3.	professional, or social issues and to further develop their analytical and ethical	а	с		e	f	h	i
	leadership skills necessary to address and help solve these issues.							
4.	To provide students with the opportunity to refine research skills and	0	0		е	f	a	;
4.	demonstrate their proficiency in written and/or oral communication skills.	а	с		е	1	g	1
5	To take on the challenges of teamwork, prepare a presentation in a professional			7			,	
5.	manner, and document all aspects of design work.			a			g	

Session		Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	1.	curriculum: it is the culmination of the program of study enabling the students to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open- ended problem in engineering.				
	2.	Each student must register to the project course related to his or her program				
	3.	Major Project course consists of one semester and would be allowed to register only during the final year of study.				
	4.			C,D,I,O	1,2,3,4,5	
	5.					
	6.	Each project will be assigned a faculty, who will act as the supervisor.				
	7.	The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.				
	8.	Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.				

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	9. A group project may be interdisciplinary, with students				
	enrolled in different engineering degrees, or in Engineering				
	plus other faculties such as Management, Medical and				
	Health Sciences, Science and Humanities.				
	10. Each student team is expected to maintain a log book that				
	would normally be used to serve as a record of the way in				
	which the project progressed during the course of the session.				
	11. Salient points discussed at meetings with the supervisor (i.e.,				
	suggestions for further meetings, changes to experimental				
	procedures) should be recorded by the student in order to				
	provide a basis for subsequent work.				
	12. The logbook may be formally assessed;				
	13. The contribution of each individual team member will be				
	clearly identified and the weightage of this component will				
	be explicitly considered while assessing the work done.				
	14. A project report is to be submitted on the topic which will be				
	evaluated during the final review.				
	15. Assessment components will be as spelt out in the regulations.				
	0				
	16. The department will announce a marking scheme for awarding marks for the different sections of the report.				
	17. The project report must possess substantial technical depth				
	and require the students to exercise analytical, evaluation				
	and design skills at the appropriate level.				
	Total contact hours				

Course nature		Project -	- 100 % Interna	al continuous A	Assessment				
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Review 1	Review 2	Review 3	Total				
m-semester	Weightage	10%	15%	20%	45%				
End semester examination	Assessment Tool	Project Report	Viva Voce						
End semester examination	Weightage :	25%	309	%	55%				

15EF251E		Sustainable Energy	L	Т	Р	С		
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3	0	0	3		
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book /	NIL							
Codes/Standards	INIL							
Course Category	Е	PROFESSIONAL ELECTIVE PC	OWER SYST	TEMS				
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32 nd	Academic Council Meeting, 2016						

	PURPOSE	URPOSE To understand the different types of non-conventional energy resources like solar, we biomass, ocean, tidal and wave sources and their conversion techniques							
INST	RUCTIONAL	OBJECTIVES	S	TUDE	NT (OUT	CON	MES	
At th	e end of the cour	se, the student will be able to							
1.	Understand the	e concept of various non-conventional energy resources	а						
2.		oth knowledge on the conversion of non-conventional es into Electrical power	а						
3.	Become intellectual in new developments of renewable energy studies								
4.	Attain knowled	ge in green energy technologies	а						

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: SOLAR ENERGY	09			
1.	Various solar energy systems and their applications	1	С	1	1
	Solar spectra-latitude and longitude, Declination				
2.	angle, solar window, cosine law, seasonal variations,	2	С	1,2	2
	daily variation, hour angle				
3.	Calculation of angle of incidence	1	С	3	2
4.	Principle of photovoltaic conversion of solarenergy - Types of solar cells and fabrication	2	С	4	3
5.	Photovoltaic - battery charger, domestic lighting, street lighting, water pumping etc	2	С	4	3
6.	Solar Photovoltaic power plant – Net metering concept	1	С	3	2
	UNIT II: WIND ENERGY	09			
7.	Nature of the wind – wind power– factors influencing wind	2	С	1	1
8.	Wind data and energy estimation - wind speed monitoring - wind resource assessment - Betz limit - site selection	2	C	2	1
9.	Types of wind turbines – Various control-Tip Speed Ratio – Solidity	2	С	3	3
10.	Torque on wind-wind thrust calculations	2	С	2	3
11.	Repowering concept	1	С	1	2
	UNIT III: BIO-ENERGY	09			
12.	Energy from Biomass - Biomass as Renewable Energy Source - Types of Biomass Fuels - Solid, Liquid and Gas	2	С	1	1
13.	Biomass Conversion Techniques- Wet Process, Dry Process-Photosynthesis - Biogas Generation	2	С	1,2	1
14.	Factors affecting Bio-digestion –Different digesters – Digesters sizing - Advantages and Disadvantages	2	C	1,2	2
15.	Digesters power generated and problems	1	С	2	3
16.	Energy Forming –Pyrolysis	2	С	1,3	1
	UNIT IV: ENERGY FROM OCEANS	09			
17.	Ocean Thermal Energy Conversion (OTEC): Principle- Lambert Law of absorption - Open and closed OTEC CyclesMajor problems and operational experience	2	С	1	1,4
18.	Tidal energy: Tide – Spring tide, Neap tide – Tidal range – Tidal Power – Types of Tidal power plant	2	С	1,4	2

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
19.	Single and dual basin schemes - Requirements in tidal power plant	2	С	2	2
20.	Wave Energy – Wave Characteristics	1	C	1,3	1
21.	Different wave energy convertors -Saltor Duck , Oscillating water column and dolphin types	2	С	2	1,4
	UNIT V: GEOTHERMAL ENERGY	09			
22.	Geothermal Energy – Classification	2	С	1	1
23.	Fundamentals of geophysics	1	С	1	1
24.	Dry rock and hot aquifers energy analysis	3	С	1,2	3
25.	Estimation of thermal power, Extraction techniques	3	С	3	3
	Total hours	45			

LEARNI	NG RESOURCES
Sl. No.	TEXT BOOKS
1.	Rai, G.D.,"Non Conventional sources of Energy", Khanna Publishers ,5th Edition 2016.
2.	Khan. B.H, "Non-Conventional Energy Resources", The McGraw Hills, 2 nd Edition, 2016.
REFERE	ENCE BOOKS / OTHER READING MATERIAL
3.	Rao. S. & Pamlekar Dr.B.B. "Energy Technology", Khanna Publishers, 3rd Edition 2016
4.	John W Twidell and Tony D Weir, "Renewable Energy Resources", Taylor and Francis, 2 nd Edition 2006

Course nature Theory							
Assessment Method (Weightage 100%)							
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

15EE252E		Electrical Power Utilization and Illumination			L 3	Т 0	P 0	C 3
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	Е	PROFESSIONAL ELECTIVE	CIRCUITS	AND	SYS	TEMS		
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32 nd ,	Academic Council Meeting, 2016						

To gain the knowledge about power utilization by heating, welding, traction, refrigeration and PURPOSE air conditioning and illumination systems INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES At the end of the course, student will be able to Select the heating and welding requirements and the lighting system 1. а e 2. 3. Familiarize the industrial drives and traction system а e Bring solutions for the problems in refrigeration and air conditioning h а e systems

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT-I ELECTRIC HEATING AND WELDING	9			
1.	Principle of heating – modes of heat transfer	1	С	1	1,2
2.	Types of heating – Resistance heating	1	С	1	1,2
3.	Arc heating – Induction heating	1	С	1	1,2
4.	Eddy current heating – dielectric heating	1	С	1	1,2
5.	Advantages – Applications – related simple problems	1	C	1	1,2
6.	Principles of welding – types of welding	1	С	1	1,2
7.	Welding electrodes – Resistance welding	1	С	1	1,2
8.	Arc welding – ultrasonic welding – testing of welding	1	C	1	1,2
9.	Power supply – comparison of types – problems	1	С	1	1,2
	UNIT II: ILLUMINATION	9			
10.	Laws of illumination – lighting calculation	2	С	1	1,2
11.	Sources of light - photometers	1	С	1	1,2
12.	Illumination systems – lighting schemes	1	С	1	1,2
13.	Lighting systems – indoor / outdoor lighting	1	С	1	1,2
14.	Electrical lamps – discharge / arc lamps	1	С	1	1,2
15.	Sodium Vapour – High Pressure Mercury Vapour lamps	1	C	1	1,2
16.	Neon lamps – Fluorescent tubes	1	С	1	1,2
17.	Design of lighting - illumination calculation	1	C,D	1	2
	UNIT III: INDUSTRIAL UTILISATION	9	,		
18.	Selection of motors – types of drives	1	С	2	1,2
19.	Nature of load – characteristics	1	С	2	1,2
20.	Speed control – enclosures	1	С	2	1,2
21.	Transmission of drives	1	С	2	1,2
22.	Size and Rating	1	C	2	1,2
23.	Temperature – time curves	1	C	2	1,2
24.	Insulation materials	1	C	2	1,2
25.	Energy conservation in electrical drives - Types of services, problems	2	C	2	1,2
	UNIT IV: TRACTION AND BRAKING	9			
26.	Systems of electric traction – comparison of supply systems – requirement	1	C	2	1,2
27.	Speed – time curves – mechanics of train movement	1	C	2	1,2
28.	Power energy output – factors affecting energy consumption	1	C	2	1,2

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
29.	Related simple problems	1	С	2	1,2
30.	Types of braking – regenerative braking	1	С	2	1,2
31.	Mechanical braking – auxiliary equipment	1	С	2	1,2
32.	Over-head equipment – current collectors	1	С	2	1,2
33.	Sag and tension of trolley wires	1	С	2	1,2
34.	Feeding and distribution systems - Energy saving	1	C	2	1,2
	UNIT V: REFRIGERATION AND AIR- CONDITIONING SYSTEMS	9			
35.	Elements of refrigeration system - rating	1	С	3	2
36.	Vapour compression system	1	С	3	2
37.	Domestic refrigerator – water cooler	1	С	3	2
38.	Electrical circuits of refrigerator and controls	1	С	3	2
39.	Concept of Psychometrics	1	С	3	2
40.	Human comfort	1	С	3	2
41.	Air conditioning system	1	С	3	2
42.	Classification of air conditioning systems	1	С	3	2
43.	Applications of air conditioning systems	1	С	3	2
	Total contact hours			45	

LEARN	LEARNING RESOURCES							
Sl. No.	TEXT BOOKS							
1.	S.L.Uppal, "Electric power", Khanna publication, 1997							
2.	R.K.Rajput, "Utilisation of electrical power", First edition, Lakshmi publications, 2006							
REFERI	REFERENCE BOOKS/OTHER READING MATERIAL							
3.	Soni, Gupta, Bhatnagar, "A course in electric power", Dhanpatrai and sons, 1999							

Course natu	ıre			Theory				
Assessment	Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
				End semest	er examination	Weightage :	50%	

15EE253E		Advanced Topics in Electrical	L 3	Т 0	P 0	C 3	
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL ELECTIVE	POWER SYSTEMS				
Course designed by	Dep	Department of Electrical and Electronics Engineering					
Approval	32nd	Academic Council Meeting 2016					

To acquire fair knowledge on the characteristics of insulation materials and to familiarize the PURPOSE testing and measurement of insulation for various equipment STUDENT OUTCOMES **INSTRUCTIONAL OBJECTIVES** At the end of the course, student will be able to Select the appropriate insulation material and to understand about 1. а failures 2. 3. Familiarize about dielectrics and vacuum insulation а Acquire knowledge on advanced measuring and testing techniques a h k

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT-I INSULATION MATERIALS AND FAILURES	9			
1.	Electrical discharge – partial break down	1	С	1	1
2.	Classification of electric fields	1	С	1	1
3.	Types of Dielectrics	1	С	1	1
4.	Electric strength of dielectrics	1	С	1	1
5.	Organic and inorganic insulation materials	1	С	1	1
6.	Insulation materials properties – application	1	С	1	1
7.	Causes of insulation degradation	1	С	1	2
8.	Failure modes	1	С	1	2
9.	Recent insulation testing and diagnostic techniques	1	С	1	2
	UNIT II: DIELECTRICS	9			
10.	Sources of dielectrics – characteristics	2	С	2	1,2
11.	Behavior of dielectrics in electric fields	2	С	2	1,2
12.	Machine insulation system	1	С	2	1,2
13.	Insulation defects – insulation stress	1	С	2	1,2
14.	Composite insulation system	1	С	2	1,2
15.	Nano dielectrics	1	С	2	1,2
16.	Properties and handling of Sulphur hexafluoride – application	1	С	2	1,2
	UNIT III: VACUUM INSULATION	9			
17.	Breakdown electron emission	1	С	2	1,2
18.	Pre-breakdown conduction	1	С	2	1,2
19.	Effective condition of electrodes	1	С	2	1
20.	Breakdown mechanism in vacuum	2	С	2	1
21.	Factors affecting breakdown voltage	1	С	2	1
22.	Vacuum circuit breaker	1	С	2	1
23.	Space application	1	С	2	1
24.	Tutorial	1	С	2	1
	UNIT IV: INSULATION TESTING	9			
25.	Classification of testing – Procedures and standards	2	С	3	2
26.	Testing automation	1	С	3	2
27.	Partial discharge test	1	C	3	2
28.	Dielectric loss test	1	С	3	2
29.	Insulation Testing of equipments	1	C,I	3	2
30.	Testing of Transformer and cable accessories	1	C,I	3	2
31.	Testing of Electrical switchgear and circuit breakers	1	C,I	3	2
32.	Testing of Motor and Generators	1	C,I	3	2

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference	
	UNIT V: ADVANCED MEASUREMENT AND DIAGNOSTIC TECHNOLOGIES	9				
33.	Digital impulse recorders – digital techniques in testing	2	C	3	3	
34.	Testing automation	1	C	3	3	
35.	Electric field measurements	1	C	3	3	
36.	Electro optic sensors – Magneto Optic Sensors	2	C	3	3	
37.	Space charge measurement techniques	1	C	3	3	
38.	Electro – optical imaging techniques	1	C	3	3	
39.	Insulation resistance measuring instruments	1	C	3	3	
	Total contact hours	45				

LEARNI	ING RESOURCES						
Sl. No.	TEXT BOOKS						
1.	Ravindra Arora, Wolfgang Mosch, "High voltage and electrical insulation engineering", IEEE press series						
	n power engineering, 2011						
2.	Paul Gill, "Electrical power equipment maintenance and testing", Second edition, CRC Press, Taylor &						
	Francis group, 2009						
REFERE	ENCE BOOKS/OTHER READING MATERIAL						
3.	N.H.Malik, A.A.Al-Arainy, M.I.Qureshi, "Electrical insulation in power systems", CRC Press, Taylor &						
	Francis group, 1998						

Course natu	re			Theory						
Assessment	Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5% 5%				
End semester examination Weightage : 50										

15EF254E Instrumentation Systems			L	Т	Р	С	
15EE254E		instrumentation Syster	115	3	0	0	3
Co-requisite:	NIL						
Prerequisite:	NIL						
Course Category	Р	PROFESSIONAL ELECTIVE CIRCUITS AND SYSTE					
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32nd	2 nd Academic Council Meeting, 2016					

	PURPOSE To acquire knowledge on working of sensors, transducers and signal conditioning circuits							
INST	INSTRUCTIONAL OBJECTIVES				OUI	ICON	1ES	
At the	e end of the course, student will be able to							
1.	Understand the methods of representation, operations and performance of the system	а						
2.	Familiarize the knowledge in various types of transducers working	а	e					
3.	Provide adequate knowledge in interfacing devices	а						
4.	Understand the concept of interfacing various input output devices	a	k					

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: BASICS OF INSTRUMENTATION SYSTEM	9			
1.	Basic concept of measurement	1	С	1,2	1,2
2.	Characteristics of instrumentation devices	2	С	1	1
3.	Types of Errors	2	С	1	1
4.	Calibration of instruments	1	С	1,2	1,2
5.	Statistical methods	2	С	1	1
6.	Types of instrumentation systems-zero order, first order and second order systems	1	C	1,2	1,2
	UNIT II: DISPLACEMENT AND SPEED SENSORS	9			
7.	Introduction to displacement sensor	1	С	2	2
8.	Optical encoder	1	С	2	2
9.	Moiré fringes	1	С	2	2
10.	Optical proximity sensor	1	С	2	2
11.	Mechanical switches	1	С	2	2
12.	Capacitive proximity sensor	1	С	2	2
13.	Inductive proximity sensor	1	С	2	2
14.	Incremental encoder	1	С	2	2
15.	Tachogenarator	1	С	2	2
	UNIT III: PRESSURE AND FLOW SENSOR	9			
16.	Diaphragm and piezoelectric sensor	1	С	2	2
17.	Differential pressure methods	1	С	2	2
18.	Turbine meter	2	С	2	2
19.	Ultrasonic time of Flight flow meter	2	С	2	2
20.	Vortex flow rate method	2	С	2	2
21.	Simple problems	1	С	2	2
	UNIT IV: SIGNAL CONDITIONING	9			
22.	Instrumentation amplifier	2	C,D	3	1,2
23.	Modulators and demodulators	1	С	3	1,2
24.	Sample and Hold circuits	1	С	3	1,2
25.	Various types of ADC	2	C,D	3	1,2
26.	Types of DAC	1	C	3	1,2
27.	Active and passive filters	1	С	3	1,2
28.	Design of signal conditioning system, simple problems	1	С	3	2
	UNIT V: APPLICATIONS OF INSTRUMENTATION SYSTEM	9			
29.	Temperature measurement case study	2	C,D	4	1,2
30.	Encoder and Speed measurement	2	C,D	4	1,2
31.	Position measurement	2	C,D	4	1,2
32.	IR sensor and Obstacle detection	1	C,D	4	1,2

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference		
33.	Humidity measurement	2	C,D	4	1,2		
	Total contact hours	45					

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1	Sawhney A.K., "A course in Electrical& Electronic Measurement and Instrumentation", Dhanp at Rai and
1	Co(P)Ltd.,reprint 2013
2	William Bolton, "Instrumentation and control systems", Newnes, 2nd Edition, 2015
REFERE	ENCE BOOKS/OTHER READING MATERIAL
3	Neubert H K P, "Instrument Transducers - An introduction to their performance and design" Clare don
5	press, Oxford (1975).
4	Patranabis D., "Sensors and Transducers", PHI, 2003.
5	Slater Michael, "Microprocessor Based Design", Prentice Hall of India Pvt Ltd. New Delhi (1999)

Course natur	re			Theory						
Assessment	Assessment Method – Theory Component (Weightage 50%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
	End semester examination Weightage : 5									

15EE351E		Power Quality	L 3	Т 0	Р 0	C 3	
Co-requisite:	NIL						
Prerequisite:	EE30	1J					
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL ELECTIVE	POWER SYSTEMS				
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32nd	Academic Council Meeting, 2016					

PURI	POSE To study the various issues affecting Power Quality, t mitigation methods.	To study the various issues affecting Power Quality, their production, monitoring and mitigation methods.						
INST	RUCTIONAL OBJECTIVES		STUD	ENT (OUTO	COM	IES	
At the end of the course, student will be able to								
1.	Perceive the power quality major events like voltage sag, interruption and harmonics.	a	e	h				
2.	Study the various methods of power quality mitigation and monitoring	a		h	j			
3.	Understand the power quality issues due to distributed generation	а		h	j			

Session	Description of Topic	Contact hours	C-D-I- O	IOs	References
	UNIT I: INTRODUCTION TO POWER QUALITY EVENTS	9			
1.	Introduction to power distribution system- deregulated environment- Power quality: concepts and definition.	1	С	1	1,2,4
2.	Characterization of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation.	3	С	1	1,2,4
3.	Causes and effects of power quality problems - CBEMA, ITIC curves.	3	С	1	1,2
4.	Domestic Appliances and industrial-linear and nonlinear loads.	1	С	1	1,2
5.	Computer simulation of Power Quality events	1	Ι	1	2,4
	UNIT II: VOLTAGE SAG, SHORT AND LONG DURATION VARIATIONS	9			
6.	Sources and characteristics (magnitude, duration) of Voltage sag, short and long duration power quality events.	2	С	1	1,2
7.	Voltage sag influence on computer and consumer equipment-Voltage sag and interruption indices- Basic Reliability evaluation techniques- interruption criterion- general component model	3	C	1	1,2
8.	Voltage regulation using Dynamic Voltage Restorer (DVR).	2	С	1	1,2
9.	Distribution static synchronous compensator (DSTATCOM) and unified power quality conditioner (UPQC)	2	С	1	1,2
	UNIT III: HARMONICS	9			
10.	Definitions - Average – RMS value - True power factor – phase sequence - Fourier series – Numerical example for harmonic analysis	2	С	1	1,3,5
11.	Voltage and current distortions. Harmonics indices-(THD and TDD). Harmonics standards (IEEE, IEC)	1	С	1	1,3,5
12.	Harmonics sources from commercial and industrial loads. Effect of harmonics on various equipment.	2	С	1	1,3,5

Session	Description of Topic	Contact hours	C-D-I- O	IOs	References
13.	Devices for controlling Harmonics- Inline choke - Zig Zag transformer, Harmonic filters: Passive, Active and Hybrid filters.	2	C	1	1,3,5
14.	Computer aided simulation of Harmonics filters, Harmonic analysis of Industry-case study	2	Ι	1	2,6
	UNIT IV: POWER QUALITY MONITORING	9			
15.	Power Quality Monitoring –Industry requirements – standards	3	С	2	1,2,6
16.	Power Quality Measurement Equipment: Power line disturbance analyser, Harmonic analyser- Spectrum analyser,	3	С	2	1,2
17.	Flicker meters and Disturbance analyser- Assessment of Power Quality Measurement Data.	2	С	2	1,2
18.	Application of Intelligent Systems to power quality monitoring.	1	С	2	6
	UNIT V: POWER QUALITY IN DISTRIBUTED GENERATION	9			
19.	Introduction to DG Technologies-Interface to the Utility System-Power Quality issues.	3	С	3	1,2
20.	Operating conflicts-DG on Distribution Networks.	2	С	3	1,2
21.	Site study for Distributed Generation- Interconnection standards.	3	С	3	1,2
22.	Issue on Power Quality in Smart Grids and Micro Grids	1	С	3	6
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1.	Roger C. Dugan, Mark Mc Granaghan, Surya Santoso, H.Wayne, H. Wayne Beaty," Electrical Power
	Systems Quality "Tata McGraw Hill, Third edition.2012
2.	Dash.S.S, Rayaguru.N.K, "Power Quality Management", 2nd Edition, Vijay Nicole Publishers, 2016
3.	Jos Arrillaga, Neville R. Watson, "Power System Harmonics", 2nd Edition, Wiley Publishers, 2015
REFERI	ENCE BOOKS/OTHER READING MATERIAL
4.	Arindam Ghosh, "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic
	Publishers, 2002
5.	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition)
6.	www.ieeexplorer.com, www.sciencedirect.com

Course nature	re			Theory						
Assessment	Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
				End semest	er examination	Weightage :	50%			

15EE352E	Advanced Control 7	Theory	L 3	T 0	P 0	C 3		
Co-requisite:	Nil							
Prerequisite:	ISEE211							
Data Book / Codes /	Nil							
Standards	111							
Course Category	E Professional Elective	CIRCUITS AND SY	STEN	ЛS				
Course designed by	Dept of Electrical and Electronics Engineering							
Approval	32 nd Academic Council Meeting, 2016							

	PURPOSE To study and analyze various advanced cont mathematical problems	rol strateg	gies w	vith t	he a	pplica	ations	s of	
INST	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At the	e end of the course, the student will be able to								
1.	Apply various stability concepts to non-linear systems	а		e	j				
2.	Gain knowledge on the basics of optimal and adaptive control	а	с	e	j				
3.	Familiarize with the practical utility of controllability, observability	а	с	e	i				
	and state observer concepts	a	Ľ	c	J				

Session	Description of Topic	Contact hours	C- D-I- O	IOs	References
	UNIT I: NON-LINEAR SYSTEMS	09			
1.	Introduction- Types of non-linear phenomena- singular point	2	С	1	3
2.	Phase plane method-Construction of phase trajectories using delta method	2	С	1	3
3.	Construction of phase trajectories using isoclines method	2	С	1	3
4.	Derivation of describing functions – Relay, Hysteresis, Dead- zone, Saturation and Jump resonance	3	С	1	3
	UNIT II: STABILITY CONCEPTS	09			
5.	Stability concepts – stability in the sense of Lyapunov, BIBO stability	1	С	1	1,2,8
6.	Stability of non-linear systems by describing function method	2	С	1	3
7.	Lyapunov Theory - Generation of Lyapunov functions - Variable gradient method, Krasooviski's method	2	С	1	2,3,8
8.	Stability analysis of linear continuous time invariant systems using Lyapunov criterion	3	С	1	1,2,8
9.	Stability analysis – Popov and Circle criterion	1	С	1	1
	UNIT III: OPTIMAL CONTROL	10			
10.	Performance Indices - Linear Optimal Control with quadratic performance index - Solution of Riccati equation	2	С	2	3,4,7
11.	Method of calculus of variations - minimum principle	2	С	2	1,4,7,
12.	Formulation of the optimal control problem- State regulator problem for continuous time systems	2	C, D	2	1,4,7
13.	Output regulator problem for continuous time systems	2	C, D	2	3,4,7
14.	Optimal control problem using Hamiltonian – Jacobi method	2	C, D	2	1,4,7
	UNIT IV: ADAPTIVE CONTROL	09			
15.	Need for adaptive control systems - Mathematical models used in adaptive control - MIT rule	1	С	2	3,6
16.	Methods of adaptation- Gain scheduling - Classifications of Model Reference Adaptive Control (MRAC)	2	С	2	3,6
17.	Direct and indirect MRAC	2	С	2	3,6
18.	Design of MRAC using Lyapunov theory		C, D	2	3,6
19.	Different approaches to self-tuning - Recursive parameter estimation, Implicit and explicit STR		С	2	3,6
20.	Pole assignment approaches to multivariable self-tuning regulators	1	C, D	2	3,6

	UNIT V: MODAL CONTROL	08			
21.	Controllable and Observable companion forms	3	С	3	1, 5
22.	State feedback - Effect on Controllability and Observability, Pole placement technique	2	С	3	1, 5
23.	Observer - Full order, Reduced order	3	C, D	3	1, 5
	Total contact hours	45			

LEARN	ING RESOURCES					
Sl. No.	TEXT BOOKS					
1	M.Gopal, "Modern Control System Theory", New Age International (P) Limited, Publishers, Third edition,					
-						
2	Ogata.K, "Modern Control Engineering", Prentice Hall of India, Fifth edition, 2010					
3	Nagrath.I.J, and Gopal.M, "Control Systems Engineering", New Age International (P) Limited, Publishers, Fifth edition, 2014					
	REFERENCE BOOKS / OTHER READING MATERIAL					
4	Donald E.Kirk, "Optimal Control Theory an Introduction", Dover Publications, 2004					
5	Graham.C, Goodwill, Graebe.S, and Salgado.M, "Control System Design" Prentice Hall India, New Delhi, 2000					
6	Astrom.K.J, and Wittenmark.B, "Adaptive control", Pearson Education India, Fifth impression, 2009					
7	Brian D. O. Anderson, John Barratt Moore, "Optimal Control: Linear Quadratic Methods", Dover					
/	Publications, 2007					
8	R.T.Stefani, B. Shahian, C.J.Savant and G.H Hostetter, "Design of feedback control systems," Oxford					
0	University Press, 2002					

Course natu	re			Theory				
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	50%		
End semester examination Weightage :								

15EE353E		Modern Optimization Techniques			Т 0	P 0	C 3
Co-requisite:	Nil						
Prerequisite:	Nil						
Data Book / Codes/Standards	Nil	il					
Course Category	Р	PROFESSIONAL ELECTIVE	INTELLIGENT	SYSTEM	S		
Course designed by	Depar	Department of Electrical and Electronics Engineering					
Approval	32 nd	32 nd Academic Council Meeting,2016					

	PURPOSE	'o learn the concepts and techniques of evolutionary and optimization techniques in power ystemapplications.							
INST	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At the end of the course, student will be able to									
1.	Obtain knowled problems.	lge on optimization techniques applied to power system	а	e					
2.		different evolutionary computation techniques and multi ization and their applications in power systemproblems.	а	e					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: FUNDAMENTALS OF	0			
	OPTIMIZATION	9			
	Definition-Classification of optimization problems-				
1.	Unconstrained and Constrained optimization-	2	С	1	1,2
	Optimality conditions-				
	Classical Optimization techniques (Linear and non-				
2.	linear programming, Quadratic programming, Mixed	2	С	1	1,2
	integer programming)				
2	Intelligent Search methods – Genetic Algorithm, Ant	2	С	1	1.2
3.	Colony Optimization			1	1,2
4.	Tabu search, Particle swarm optimization	3	С	1	1,2
	UNIT II : GENETIC ALGORITHM	9			
5	Evolution in nature-Fundamentals of Evolutionary	2		1	2.4
5.	and Genetic algorithms	2	С	1	3,4
6.	Working Principles of Genetic Algorithm	2	С	1	3,4
7.	Genetic Operators-Selection, Crossover and	2	D	1	2.4
7.	Mutation	2	D	1	3,4
8.	Issues in GA implementation	1	D	1	3,4
0	Applications of GA in Engineering optimization	2	D	1	2.4
9.	problems.	2	D	1	3,4
	UNIT III : PARTICLE SWARM	9			
	OPTIMIZATION	9			
10.	Fundamental principle-Velocity Updating	2	D	2	5,6
11.	Advanced operators - Parameter selection	2	D	2	5,6
12.	Hybrid approaches (Hybrid of GA and PSO)	2	D	2	5,6
13.	Implementation issues-Convergence issues	2	Ι	2	5,6
14	Applications of PSO in Engineering optimization	1	Ŧ	2	5.2
14.	problems.	1	Ι	2	5,6
	UNIT IV : NATURE INSPIRED METHODS	9			
15.	Simulated annealing algorithm	2	Ι	2	3,6
16.	Differential Evolution	3	Ι	2	3,6
17.	Ant colony optimization	2	Ι	2	3,6
18.	Bacteria Foraging optimization –Firefly algorithm	2	Ι	2	3,6
	UNIT V: MULTI OBJECTIVE				- , -
	OPTIMIZATION	9			
16	Concept of pareto optimality-Conventional			-	1 -
19.	approaches for MOOP	2	0	2	1,7
20.	Multi objective GA-Fitness assignment	2	0	2	1,7
20.	Sharing function- MOGA	2	0	2	1,7

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
22.	Multiobjective PSO (dynamic neighbourhood PSO, Vector evaluated PSO)	2	0	2	1,7
23.	Multi objective OPF problem.	1	0	2	1,7
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1.	S.P.Kothari and J.S.Dhillon, "Power System Optimization", 2 nd Edition, PHI Learning Private Limited, 2010.
2.	Kalyanmoy Deb,"Multi objective optimization using Evolutionary Algorithms", John Wiley and Sons,
	2008.
3.	Kalyanmoy Deb," Optimization for Engineering Design", Prentice Hall of India First Edition, 1988.
Sl. No.	REFERENCE BOOKS
4.	Carlos A.Coello Coello, Gary B.Lamont, David A.Van Veldhuizen," Evolutionary Algorithms for solving
4.	Multi Objective Problems", 2nd Edition, Springer, 2007.
5.	Soliman Abdel Hady, Abdel Aal Hassan Mantawy, "Modern optimization techniques with applications in
5.	Electric Power Systems", Springer, 2012.
6.	Jizhong Zhu, "Optimization of Power System Operation", John Wiley and sons Inc publication, 2009.
7	Kwang Y.Lee, Mohammed A.El Sharkawi, "Modern heuristic optimization techniques", John Wiley and
7.	Sons,2008.

Course nature	re			Theory			
Assessment	Method (Weightag	ge 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE354E		Special Electrical Machin	nes	L 3	T 0	P 0	C 3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL ELECTIVE	ELECTRICAL	MACHINES			
Course designed by	Dept	of Electrical and Electronics Engineering					
Approval	32 nd	Academic Council Meeting, 2016					

PURPOSE To acquire a fair knowledge in the construction, operating principle and performance of special electrical machines						ce of	Ĩ	
INSTRU	CTIONAL OBJECTIVES	IECTIVES STUDENT OUTCOMES						
At the er	nd of the course, the student will be able to							
1.	Understand the working principle, construction and applications of	0	h	j				
	stepper motors and reluctance motors	a	11					
2.	Gain knowledge in principle of operation, characteristics and control of permanent magnet brushless dc motors and synchronous motors	a	h	j				

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I: STEPPER MOTOR	09			
1.	Constructional features-Principle of operation-Modes of excitations-Theory of		С	1	1
	torque predictions				
2.	Types of stepper motor- Variable reluctance motor, Single and multi stack configurations	2	С	1	1
3.	Hybrid motor, Disc Magnet motor, Claw tooth motor	1	С	1	1
4.	Linear and non-linear analysis-Static and Dynamic Characteristics, Drive Circuits	2	С	1	1
5.	Microprocessor based control of stepper motors, Closed loop control	1	C,D	1	1
6.	Applications of stepper motors in robotics, CNC, computer peripherals, 3D printers	1	С	1	1
	UNIT II: SWITCHED RELUCTANCE MOTOR	09			
7.	Constructional features, Principle of operation, Types of SRM, Torque production, design of stator and rotor pole arc	2	С	1	2,3
8.	Steady state performance, Non-linear analysis	2	С	1	2,3
9.	Power converter circuits - Control of SRM	2	С	1	2,3
10.	Rotor position sensors-Hall effect sensing scheme, Optical position sensing scheme	1	С	1	2,3
11.	Current Regulators-Voltage PWM type, Hysteresis type	1	С	1	7
12.	Sensor-less operation-Closed loop control of SRM-Characteristics	1	С	1	2,3
	UNIT III: SYNCHRONOUS RELUCTANCE MOTORS	09			
13.	Constructional features-Types-Axial and Radial flux motors - Operating principles	2	С	1	2
14.	Variable Reluctance and Hybrid Motors	2	С	1	2
15.	SYNREL Motors - Voltage and Torque Equations	1	С	1	2
16.	Control of SRM	1	С	1	2
17.	Phasor diagram- Characteristics-Vernier motor	1	С	1	2
18.	Steady state and Dynamic analysis of Synchronous reluctance motors controlled by voltage -fed converters	2	С	1	2

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT IV: PERMANENT MAGNET BRUSHLESS D.C.MOTORS	09			
19.	Permanent Magnet materials-Magnetic Characteristics – Permeance coefficient- Magnetic circuit analysis	2	С	2	1,5,6
20.	Electronic commutation- Principle of operation – Types of motors	2	С	2	1,5,6
21.	Theory of brushless DC Motor as variable speed synchronous motor, EMF and torque equations, Commutation	2	С	2	1,5,6
22.	Power controllers, Motor characteristics and control	2	С	2	1,5,6
23.	Closed loop control of BLDC motor-using DSP, Microprocessor	1	C,D	2	7
	UNIT V: PERMANENT MAGNET SYNCHRON OUS MOTORS	09			
24.	Principle of operation, Ideal PMSM	1	С	2	4,5
25.	EMF and Torque equations, Armature reaction MMF, Synchronous Reactance	2	С	2	4,5
26.	Sine wave motor with practical windings, Phasor diagram	1	С	2	4,5
27.	Circle diagram-Control of PMSM	2	С	2	7
28.	Power Converter-Volt-ampere requirements-Torque speed characteristics	2	С	2	4,5
29.	Linear Synchronous Motors, Microprocessor based control of synchronous motors	1	C, D	2	4,5
	Total contact hours			45	

Sl. No.	TEXT BOOKS									
1	Kenjo T., "Stepping M	otors and Thei	ir Microproce.	ssor Controls", Cl	arendon Press,	Oxford, 1984				
2	Miller T.J.E., "Brushle	ess Permanent	Magnet and R	eluctance Motor	Drives", Oxford	University				
2	² Press,1989									
REFERENCE BOOKS / OTHER READING MATERIAL										
3	Krishnan R., "Switch	hed Reluctand	e Motor Dri	ves – Modeling	, Simulation,	Analysis, Desi	gn and			
5	Application", CRC Press, New York, 2009.									
4	Krishnan R., "Permanent Magnet Synchronous and Brushless DC Motor Drives", CRC Press, New York,									
4	2010.									
5	Jacek F. Gieras, Jacek	F. Gieras, Mite	chell Wing, "I	Permanent Magne	t Motor Techno	ology: Design a	nd			
5	Applications", CRC Pr	ess , Second E	dition, 2002.							
6	Hendershot J. R. and M		"Design of Bri	ıshless Permanen	t Magnet Mach	ines", Motor D	esign			
0	Books LLC, 2 nd Edition	n, 2010.								
7	Janardanan E.G., "Spe	cial Electrical	Machines", Pl	HI Learning Priva	te Limited, 201	5.				
Course	nature			Theory						
Assess	ment Method (Weighta	ge 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semes	ter Weightage	10%	15%	15%	5%	5%	50%			
				End semest	er examination	Weightage :	50%			

15EE355E		HVDC and EHVAC Systems	L	Т	Р	С	
15125551		HVDC and EnvAC Systems	3	0	0	3	
Co-requisite:	NIL						
Prerequisite:	15EE	213					
Data Book /	NIL						
Codes/Standards	INIL						
Course Category	Р	PROFESSIONAL ELECTIVE	POWER S	SYSTEMS	3		
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32nd	Academic Council Meeting , 2016					

]	PURPOSE To acquire knowledge in basic principles, economic EHVAC and HVDC System.			spects and calculations involved in						
INST	RUCTIONAL	OBJECTIVES	S	TUDE	NT	OUI	CON	MES		
At the	end of the cour	se, student will be able to								
1.		e basic concepts of Extra High Voltage Transmission.	а							
2.	Learn the gene Transmission S	ral background and operational concepts in EHVAC	a	e						
3.	Realize the sig and application	nificance of HVDC Transmission and its modern trends	a	h						
4.		e general principle of HVDC control and harmonic HVDC Systems	a							

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I – EHV TRANSMISSION	08			
1.	Brief Description of Energy Sources and their Development	1	C	1	1
2.	Introduction to and the necessity for EHV Transmission.	1	C	1	3
3.	Challenges involved in EHV Transmission.	1	С	1	1,3
4.	Operational Aspects of EHV AC and HVDC power transmission.	3	C	1	3
5.	Gas insulated EHV transmission lines.	1	С	1	1
6.	Environmental issues of EHV transmission lines.	1	С	1	1
	UNIT II – GENERAL BACKGROUND OF EHVAC TRANSMISSION SYSTEMS	10			
7.	Standard Voltage levels and Hierarchical levels for Transmission systems	1	С	2	1
8.	Determination of line parameters- resistance, inductance and capacitance of EHV lines	4	C	2	1
9.	Power handling capacity and line losses	2	D	2	1
10.	Mechanical considerations in transmission line performance	2	C	2	1
11.	Comparison of Overhead and Underground lines- Examples of Giant power pools in the world.	1	С	2	1
	UNIT III – ASPECTS OF EHVAC SYSTEM	09			
12.	Bundled conductors	1	С	2	1
13.	Corona Effects – Power loss and audible noise	2	С	2	1
14.	Telephone Interference.	1	С	2	1
15.	Design of filter.	1	D	2	1
16.	General principles of the lighting protection problem.	2	C	2	1
17.	Insulation Coordination based on lightning.	1	С	2	1
18.	Arresters used for EHV systems.	1	С	2	1
	UNIT IV – HVDC TRANSMISSION SYSTEMS	09			
19.	Choice of HVDC Transmission	1	С	3	2,4
20.	Comparison – Economics, Technical Performance and Reliability of DC power Transmission	2	С	3	2,4
21.	Description of HVDC Converter station	2	С	3	2,3,4

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
22.	Types of HVDC Links, Merits and limitations of HVDC System	1	С	3	2,3,4
23.	Applications -Modern Trends in HVDC transmission	2	С	3	2
24.	Case Studies of HVDC links in the world.	1	С	3	2
	UNIT V – CONVERTERS AND HVDC SYSTEM CONTROL	9			
25.	Pulse number – Choice of Converter Configuration	1	С	4	2
26.	Simplified analysis of Graetz circuit	2	C,D	4	2
27.	Principles of HVDC link Control	2	С	4	2,3,4
28.	DC Breaker	1	С	4	2,4
29.	Harmonic Elimination – AC and DC Filter design	1	Ι	4	2,3,4
30.	Protection Systems in HVDC Substation	1	С	4	2,4
31.	HVDC Simulator	1	С	4	2,4
	Total contact hours			45	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Rakosh Das Begamudre, "Extra High Voltage AC Transimission Engineering", Third Edition, New Age
	International(P) Limited, Publishers., 2009
2.	Padiyar K.R., "HVDC Power Transmission Systems", New Age International (P) Limited, Publishers., 2015.
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	Chakrabarti A., M.L.Soni, P.V.Gupta, U.S.Bhatnagar , "Power System Engineering", Dhanpat Rai & Co.,
	2010.
4.	Sunil S.Rao, "Switchgear Protection and Power Systems", Khanna Publishers., 2008.

Course natu	Course nature Theory										
Assessment	Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total				
semester	Weightage	10%	15%	15%	5%	5%	50%				
				End semest	er examination	Weightage :	50%				

15EE356E		Photonics					P 0	C 3
Co-requisite:	Nil				•	Ū	v	
Prerequisite:	Nil							
Data Book / Codes/Standards	Nil							
Course Category	Е	PROFESSIONAL ELECTIVE		ELECTRONI	CS			
Course designed by	Dep	Department of Electrical and Electronics Engineering						
Approval	32 ⁿ	¹ Academic Council Meeting, 2016		-				

PURPOSE To acquire knowledge on the physical principles and engineering applications of optical electronics and LASER.							of		
INSTR	RUCTIONAL	OBJECTIVES	S	TUDE	NT	OUI	CON	MES	
At the	end of the cour	se, student will be able to							
1.	Understand t	lerstand the concept of Photonics							
2.	Familiarize v	with the terms associated with Opto Electronic devices	а						
3.	Enrich know	ledge in Fiber Optic Photonics and its applications	а	h					
4.	Understand t	Understand the concepts of LASER and Microwave Photonics.							
5.	Familiarize t	o the industrial need of Photonics.	а	h					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: INTRODUCTION TO PHOTONICS MATERIALS	9			
1.	Organic materials for photonics, evaluation of second order and third order optical.	2	С	1	1,2
2.	Organic materials for second and third order nonlinear optics, photo refractive polymers, polymers for light emitting sources	2	С	1	1,2
3.	Optical limiting, polymers for optical fiber- Sol-Gel materials for Photonics applications	2	C	1	1,2
4.	Method of preparations, electro optic-magneto, optic and acousto optic materials	3	C	1	1,2
	UNIT II: OPTO ELECTRONICS	9			
5.	Basics of all solid state lamps-LED materials and device configuration, efficiency	2	С	2	1,4
6.	High brightness LEDs, Light extraction from LEDs	1	С	2	1,4
7.	LED structures-SH, DH, SQW, MQW, Device performance characteristics.	2	C	2	1,4
8.	Manufacturing processing and applications - White solid state lamps, Photo detectors - Thermal detectors, photoconductors	2	C	2	1,4
9.	Junction photodiodes, APD, Optical Heterodyning and electro-optic measurements, fiber coupling, phototransistor.	2	С	2	1,4
	UNIT III: FIBRE OPTICS PHOTONICS	9			
10.	Fiber optic sensors - Intensity modulation and interference type sensors, intrinsic and extrinsic fiber.	2	С	3	1,2
11.	Polarization modulation type sensors.	1	С	3	1,2
12.	Sagniac and fiber gyro, temperature, pressure, force and chemical sensors	2	С	3	1,2
13.	Fiber components - couplers, connectors, Packaging	1	С	3	1,2
14.	Fiber Optic communication- basic principle, WDM, telemetric applications	2	C	3	1,2
15.	Industrial, medical and technological applications of optical fiber.	1	С	3	1,2
	UNIT IV: LASER AND MICROWAVE PHOTONICS	9			
16.	Necessary and sufficient conditions for laser action (population invasion and saturation intensity)	2	С	4	3
17.	threshold requirements for laser with and without cavity	1	С	4	3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
18.	LASER amplifiers, rate equations for three and four level systems, pumping mechanisms.	3	С	4	3,6
19.	Steering techniques for optical fibers.	1	C	4	3,6
20.	Optical beam steering of antennas using lasers	2	C	4	3
	UNIT V: INDUSTRIAL PHOTONICS	9			
21.	Photonics Technology; Components -couplers, isolators, circulators.	2	С	5	5
22.	Multiplexers, and fillers -Fiber gratings, interferometers	2	С	5	5
23.	FO amplifiers, transmitters and deletions, switches, wavelength converters	2	С	5	5
24.	Nonlinear effects in signal transmission	1	C	5	5
25.	Self-phase and cross phase modulation, soliton pulse propagation.	2	С	5	5
	Total contact hours			45	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	S C Gupta ,"Optoelectronic devices and systems", Prentice Hall India ,2008
2.	J Hecht,"Understanding Fiber optics", Pearson Education, 2006
Sl. No.	REFERENCE BOOKS
3.	Ghatak and Thyagarajan, "Lasers-Theory and Applications", McMillan, 2010
4.	E Fred Scheubert, "Light Emitting Diodes", Cambridge University Press, 2003
5.	H T Mouftah, J M H Elmirghani, "Photonic switching technology", IEE Press 1999
6.	Amnon Yariv and Pochi Yeh, "Photonics - Optical Electronics in Modern Communications", Oxford
	University Press, 2009.

Course natu	re			Theory						
Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15	EE357 E	Power System F	larmonics		Power System Harmonics L T P C 3 0 0 3					
Co-requisit	te:	Nil				• • •				
Prerequisit		Nil								
Data Book	/	Nil								
Codes/Stan	ndards									
Course Cat	- 8 - 2	E PROFESSIONAL ELECTIV		POWER S	YSTEMS					
Course des		Department of Electrical and Electr		ring						
Approval		32 nd Academic Council Meeting, 20	016							
PURP	POSE To accelimination	quire knowledge on the sources cat	ising harmonic	s and its d	etailed an	nalysis for				
INSTRUCT	FIONAL OBJEC			ST	UDENT	OUTCOMES				
		ent will be able to								
		rms and standards associated with	harmonics	а						
2. Unde	erstand the causes	for harmonic producing loads		a						
3. Outli	ine the various eff	ects of harmonics		а	e					
	erstand the concep lation	ts of harmonic instrumentation wit	h computer	a	k					
	gn filters for harm	onic elimination		a	c e					
5. [D03]			~	т. – Г. –						
Session		escription of Topic	Contact hours	C-D-I- O	IOs	Reference				
		TIONS AND STANDARDS	9							
1.	Definition – RMS power factor	S value, average power, True	2	C	1	1, 2				
2.		ctor, Phase shift, Phase sequence	2	С	1	1, 2				
3.		ors influencing the development ting harmonic standards (IEC,	3	С	1	1, 2				
4.	General harmonic	indicas	2	С	1	1, 2				
		CES AND GENERATION OF	9		1	1, 2				
		netization machines fluorescent	2							
5.		Transformer magnetization, machines, fluorescent lamps with magnetic ballasts			2	1, 2				
		s loads such as line-commutated	_	~	-					
6.		cal current waveforms and THD	2	C	2	1, 2				
7.		ower supplies – typical current	2	С	2	1, 2				
8.		and inter-harmonics	3	С	2	1, 2				
		CTS OF HARMONICS	9		-	-, -				
9.		nce tripping, blown capacitor	4	С	3	1, 2				
10.		ternal capacitance, digital clocks,	3	C,D	3	1, 2				
11.		trals, telephone interference.	2	C,D	3	1, 2				
		STIGATION OF	9			_, _				
12.		nts, requirements, harmonic acement	2	C, D	4	1, 2				
13.		etrical components, transducers,	4	C, D	4	1, 2				
14.		tion with an example	3	D, I	4	1, 2				
		ONICS ELIMINATION	9	_, _		_, _				
15.		initions, Conventional design	1	C, D	5	1, 2				
16.	Tuned filters (bas	sics only singly-tuned), ned filters with an example	4	C, D	5	1, 2				
		design, conventional six-pulse	4	C, D	5	1, 2				
17.	design with an ex	ample	•	С, В	5	-, =				

LEARNI	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Arrillaga J. and Watson N. R., "Power system harmonics", Wiley, Second Edition, U. S. A
2.	Prof. Mack Grady, "Understanding Power System Harmonics", Dept. of Electrical & Computer
	Engineering University of Texas at Austin, U.S. A, grady@mail.utexas.edu, www.ece.utexas.edu/~grady

Course natu	re			Theory								
Assessment	Assessment Method (Weightage 100%)											
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total					
semester	Weightage	10%	15%	15%	5%	5%	50%					
	End semester examination Weightage :											

15EE358E		Advanced CMOS Devices and Te	L 3	Т 0	P 0	C 3	
Co-requisite:	Nil						
Prerequisite:	Nil						
Data Book / Codes/Standards	Nil						
Course Category	E	PROFESSIONAL ELECTI VE	ELECTRO	NICS			
Course designed by	Depa	artment of Electrical and Electronics Eng	gineering				
Approval	32nd	Academic Council Meeting, 2016					

	PURPOSE To gain a fair knowledge on characteristics a Technology	nd protection of ad	vance	d CMC	OS dev	ices a	nd
INS	TRUCTIONAL OBJECTIVES	S	STUDE	NT ()UTC(OMES	5
At th	he end of the course, the student will be able to						
1.	Learn the basic concepts of CMOS technology.	a					
2.	Study the effect of stress and strain on CMOS Devices.	a					
3.	Understand the concepts of dielectric technology and scaling	a					
4.	Familiarize with metallization and isolation technology	a	с				
5.	Know the technology progression	a	h				

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: CMOS TECHNOLOGY	8			
1.	Evolution of Silicon technology	1	С	1	1-3
2.	Metal gates integration options	2	С	1	1,3
3.	Problems in Scaling of Gate Oxide -MOSFET Scaling Limit	2	С	1	1,2
4.	Scaling trends for gate dielectrics	1	С	1	1
5.	Basic quantum mechanics	2	С	1	1,3,4
	UNIT II: EFFECT OF STRESS AND STRAIN ON CMOS DEVICES	9			
6.	Effect of stress and strain on the band structure of silicon	1	С	2	1,3,6
7.	Effect of gate length on stress effect	1	С	2	1,3
8.	Mobility Enhancements in Strained Silicon MOSFETs	2	С	2	1,3
9.	Types and realization of stress elements - Strained Isolation Oxide	2	C	2	1
10.	Fermi level pinning	2	С	2	3
11.	Effect of strain to improve the CMOS performance	1	С	2	3,4
	UNIT III: DIELECTRIC TECHNOLOGY AND SCALING	10			
12.	High-k dielectric Technology-High-k material selection	2	C	3	2,5,7
13.	Process integration of high-k gate dielectrics and metal gates	2	C	4	2,5, 1
14.	Ways of realization- single metal dual cap CMOS	2	С	3	2,5,7
15.	Fabrication issues and integration challenges	2	С	3	1,2
16.	Key scaling challenge- Scaling pathways	2	C	3	1,2
	UNIT IV: METALLIZATION AND ISOLATION TECHNIQUES	9			
17.	Ultra shallow junctions - Solutions to Shallow Junction Resistance Problem	1	C	4	7
18.	Dopant activation methods -Device Isolation pitch	2	С	4	2
19.	Interconnects - Limits on Interconnects	1	С	4	1
20.	Current Interconnect Technologies - Optical Interconnects	2	C	4	1,2
21.	Scaling of Device Isolation	1	С	4	1,2
22.	Layout dependent effects - Test structures used for characterization	2	C	4	4,5

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT V: TECHNOLOGY PROGRESSION	9			
23.	Sub-wavelength lithography - Advanced Lithography	1	С	5	3,4
24.	Nano scaled CMOS technology	2	C	5	2
25.	Design for manufacturability	2	C,D	4	4
26.	High voltage devices in advanced CMOS technologies	2	С	5	2,5,6
27.	Case Study on Emerging Technology	2	C,D	5	2,3
	Total contact hours			45	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	HeiWong, "Nano-CMOS Gate Dielectric Engineering," CRC, 2011
2.	S. Deleonibus, "Electronic Device Architectures for the Nano-CMOS Era," Pan Stanford 2009
REFERI	ENCE BOOKS/OTHER READING MATERIAL
3.	JP. Colinge, "FinFETs and Other Multi-Gate Transistors," Springer, 2010
4.	B. Wong, A. Mittal, Y. Cao, G. Starr, "Nano-CMOS Circuit and Physical Design", Wiley Inter-science,
	2004
5.	Yongke Sun, Scott E. Thompson, Toshikazu Nishida, "Strain Effect in Semiconductors: Theory and Device
	Applications", Springer 2010
6.	B. Wong, F. Zach, V. Moroz, A. Mittal, G. Starr, A. Kahng, "Nano-CMOS Design for Manufacturability",
	Wiley 2009
7.	Chris Mack, "Fundamental Principles of Optical Lithography: The Science of Microfabrication", Wiley
	Interscience, 2008
8.	http://web.stanford.edu/class/ee410/AdvCMOS.pdf

Course nature	re			Theory			
Assessment	Method (Weightag	ge 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE359E		Industrial Power Systems					С
13113371	industriai i ower Systems					0	3
Co-requisite:	Nil						
Prerequisite:	Nil						
Data Book /	Nil						
Codes/Standards	1911						
Course Category	Р	PROFESSIONAL ELECTIVE	POWER S	YSTEM:	5		
Course designed by	Depa	rtment of Electrical and Electronics Enginee	ring				
Approval	32 nd	Academic Council Meeting, 2016					

PUR	POSE To gain knowledge on various aspects of power system	in indu	stries.					
INS 7	RUCTIONAL OBJECTIVES	STUDENT OUTCOMES						
At th	e end of the course, the student will be able to							
1.	Acquire knowledge on Induction Motor Starting Studies.	а	e					
2.	Understand about Power Factor Correction in Induction Motor	a						
3.	Analyze Harmonic, Flicker, Ground Grid problem in power system	a	e	h				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: INDUCTION MOTOR STARTING STUDIES	09			
1.	Introduction, Evaluation Criteria and Starting Methods	2	С	1	1,2
2.	System Data, Voltage Drop Calculations and Calculation of Acceleration time	3	С	1	1,2
3.	Motor Starting with Limited Capacity Generators	1	С	1	1,2
4.	Computer-Aided Analysis: For multiple generators with feedback network Connections	3	C,I	1	1,3
	UNIT II: POWER FACTOR CORRECTION STUDIES	09			
5.	Introduction, System Description, Modeling & Acceptance Criteria	3	C,D	2	1,2
6.	Frequency Scan Analysis and Voltage Magnification Analysis	2	С	2	1,2
7.	Sustained Overvoltage, Switching Surge Analysis	3	С	2	1,2
8.	Back-to-Back Switching	1	C	2	1,2
	UNIT III: HARMONIC ANALYSIS	09			
9.	Harmonic Sources	2	C	3	1,3
10.	System Response to Harmonics	2	С	3	1,3
11.	System Model for Computer Aided Analysis	1	C,D	3	1,3
12.	Acceptance Criteria	1	С	3	1,3
13.	Harmonic Filters and Harmonic Evaluation	2	С	3	1,3
14.	Case Study: Chemical plant	1	C	3	1,3
	UNIT IV: FLICKER ANALYSIS	09			
15.	Sources of Flicker	1	C	3	1,2
16.	Flicker Analysis	1	C	3	1,2
17.	Flicker Criteria	1	C	3	1,2
18.	Data for Flicker analysis	2	С	3	1,2
19.	Case Study: Arc Furnace Load	2	С	3	1,2
20.	Minimizing the Flicker Effects	2	C	3	1,2
	UNIT V: GROUND GRID ANALYSIS	09		-	
21.	Introduction	1	C	3	1,3
22.	Acceptance Criteria	2	C	3	1,2
23.	Ground Grid Calculations	2	C	3	1,2
24.	Computer-Aided Analysis for ground grids	2	С	3	1,3
25.	Improving the Performance of the Grounding Grids	2	С	3	1,3
	Total contact hours			45	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Ramasamy Natarajan, "Computer-Aided Power System Analysis", Marcel Dekker Inc., 2002.
2.	J. Duncan Glover, Mulukutla S.Sarma, Thomas Overbye, "Power System Analysis and Design", 2011
3.	Turan Gonen" Electrical Power Transmission System Engineering: Analysis and Design", Mcgraw Hill publishers, 1986.

Course natu	re			Theory			
Assessment	Method (Weightag	ge 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
				End semest	er examination	Weightage :	50%

15EE361E		Flexible AC Transmission Systems	L 3	T 0	P 0	C 3	
Co-requisite:	NIL						
Prerequisite:	15EE	304					
Data Book / Codes/Standards	NIL						
Course Category	Р	PROFESSIONAL ELECTIVE	POWER	SYSTE	MS		
Course designed by	Depa	rtment of Electrical and Electronics Engineer	ring				
Approval	32 nd ,	Academic Council Meeting, 2016					

	PURPOSE	Students gain a fair knowledge about flexible AC tran power systemperformance.	smissi	on sy	stems	to en	hanc	ce ov	rerall	
INST	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At th	e end of the cour									
1.		concept of FACTS controllers	а	e						
2.	Know the conc objectives	ept of shunt and series compensation techniques and its	а	e	h					
3.	Learn basic ide	a of voltage and phase angle regulator in power system	а	e						
4.	Familiarize the	concept of versatile FACTS controllers	а	e	h	j				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: INTRODUCTION TO FACTS	9			
1.	Electrical Transmission Network – HVDC Vs HVAC -Analysis of uncompensated Transmission system-Necessity of FACTS controller.	3	С	1	1,2
2.	Load Compensation-System compensation- Real and reactive power flows in AC system	2	С	1	1,2
3.	Modelling of long transmission line-Symmetrical lossless line- Midpoint compensation -Surge Impedance Loading	2	С	1	1,2
4.	Classification of FACTS controllers -controllable parameters – Applications of FACTS. Overview of Installed FACTS projects.	2	С	1	1,2
	UNIT II: STATIC VAR COMPENSATOR (SVC)	9			
5.	Introduction to passive compensation – Objectives of shunt and series compensation.	1	С	2	1,2
6.	Single-phase and three phase-Thyristor controlled Reactor (TCR) - Analysis of single phase TCR- SVC configurations. Fixed-Capacitor– Thyristor-Controlled Reactor (FC–TCR) and its operating characteristics.	2	С	2	1,2
7.	SVC voltage control operation - Q-V characteristics. Thyristor- Switched Capacitor (TSC)-operation-practical switching strategy-V-I characteristics. (TSC-TCR)-operation -VI characteristics	3	С	2	1,2
8.	Advantages of slope in SVC dynamic characteristics –SVC Applications: Enhancement of steady state and transient stability.	3	С	2	1,2
	UNIT III: THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC)	9			
9.	Need for variable series compensation, TCSC: Basic and practical module	1	С	2	1,2
10.	Net reactance offered by TCSC	1	С	2	1,2
11.	Operation of TCSC: Basic principle and different modes of operation –Analysis of TCSC- The TSSC	1	С	2	1,2
12.	Capability Characteristics (single and multi module TCSC)-TCSC losses. TCSC applications- power flow enhancement –variable reactance model for transient stability study	2	С	2	1,2
13.	TCSC: Open loop and closed loop current control	2	С	2	1,2
14.	Computer simulation of SVC and TCSC with SMIB system	2	Ι	2	3,4,6
	UNIT IV: STATIC PHASE SHIFTING TRANSFORMER	9			
15.	Basic principle of Phase shifting transformer- Configurations of SPST.	1	С	3	4,5
16.	Objectives of voltage and phase angle regulators. Real and reactive power of voltage and phase angle regulators	2	С	3	2,4,5
17.	Applications of Phase Angle Regulator: Improvement of Transient Stability and Power Oscillation Damping	2	С	3	2,4,5

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
18.	Approaches to Thyristor controlled voltage and phase angle regulators.	2	С	3	2,4,5
19.	Continuously Controllable Thyristor Tap changers and Thyristor Tap Changer with Discrete Level Control	2	С	3	2,4
	UNIT V: EMERGING FACTS CONTROLLERS	9			
20.	Basic concepts of voltage source converters and current source converter.	1	С	4	1,2
21.	Static synchronous series compensator (SSSC): principle of operation – VI characteristics – Applications	2	С	4	1,2
22.	Static synchronous compensator (STATCOM): principle of operation – VI characteristics – Applications.	2	С	4	1,2
23.	UPFC: basic module -capabilities -Modes of operation - Applications	2	С	4	1,2
24.	Inter line power flow controller (IPFC). Configuration of IPFC- Application		С	4	1,2
25.	Introduction to Generalized unified power flow controller (GUPFC)	1	С	4	6
	Total contact hours		4	5	

Sl. No.	TEXT BOOKS
1	Mohan Mathur, R. & Rajiv K. Varma, "Thyristor Based FACTS Controller for Electrical Transmission
1.	Systems", Wiley Interscience Publications, 2002.
2.	Narain G. Hingorani& Laszlo Gyugyi, "Understanding FACTS – Concepts & Technology of Flexible AC
Ζ.	Transmission Systems", Standard Publishers, New Delhi, 2001.
3.	Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pe´rez and Ce´sar Angeles-Camacho, "FACTS -
5.	Modelling and Simulation in Power Networks" John Wiley and sons Ltd., 2004
4.	Dash.S.S, "Flexible AC Transmission Systems for Power system", Vijay Nicole publication, Second
4.	edition, 2015
REFERI	ENCE BOOKS/OTHER READING MATERIAL
5.	K.A. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International
5.	Publishers., India, 2007.
6.	www.ieeexplore.com, www.sciencedirect.com

Course natu	re			Theory					
Assessment	Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
				End semest	er examination	Weightage :	50%		

15EE362E		High Voltage Engineering	L 3	Т 0	P 0	C 3		
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book / Codes/Standards	NIL							
Course Category	Р	PROFESSIONAL ELECTIVE	POWER	SYSTE	MS			
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32 nd ,	Academic Council Meeting ,2016						

Р	PURPOSE	To get a fair knowledge on the generation, measuremer currents.	its, tes	ting o	f high	volta	ages	and	
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								/IES	
At the end of the course, the students will be able to									
1.	Understand the system	causes of over voltages and their effects on power	а						
2.	Familiarize the	e concept of solid, liquid and gaseous dielectrics	а	e					
3.		e on the generation and measurement of high voltages well as the testing of high voltage equipment.	a	e	h				

Session	1 1	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS	9			
1.	Causes of over voltages and their effects on power system	1	С	1	1,2
2.	Lightning, switching and temporary over voltages	3	С	1	1,2
3.	Protection against over voltages – insulation Coordination-estimation and control of electric stress	3	C	1	1,2,3
4.	Coordination between insulation and protection level	2	С	1	1,2,3
	UNIT II: ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS	9			
5.	Gaseous breakdown in uniform and non-uniform fields	3	С	2	1,2
6.	Corona discharges – vacuum breakdown	1	С	2	`1,2
7.	Conduction and breakdown in pure and commercial liquids	2	С	2	1,2
8.	Breakdown mechanisms in solid and composite dielectrics	3	С	2	`1,2
	UNIT III: GENERATION OF HIGH VOLTAGE AND CURRENTS	9			· · · · ·
9.	Generation of high dc voltages - multiplier circuits –Van de graff generator	3	C	3	1,2
10.	High alternating voltage generation using cascade transformers - production of high frequency AC high voltages.	2	С	3	`1,2
11.	Standard impulse wave shapes-Marx circuit generation of switching surges	2	C	3	1,2
12.	Impulse current generation	1	С	3	`1,2
13.	Control of impulse generators	1	С	3	1,2
	UNIT IV: MEASUREMENT OF HIGH VOLTAGES AND CURRENTS	9			
14.	HVDC measurement techniques – measurement of power frequency A.C voltages - sphere gap measurement technique	3	C	3	1,2
15.	Potential divider for impulse voltage measurements- measurement of high DC, AC and impulse measurements	3	C	3	1,2
16.	Measurement of dielectric constant and loss factor	1	С	3	`1,2
17.	Fast digital transient recorders for impulse measurement	2	С	3	1,2
	UNIT V: HIGH VOLTAGE TESTING	9			,
18.	Tests on insulators and testing of bushings	2	C,I	3	1,2
19.	Testing of isolators, circuit breakers and cable testing	2	C,I	3	`1,2
20.	Testing of transformers and surge diverter testing -radio interference Measurement	2	C,I	3	1,2
21.	Application of high voltage engineering in food processing and Bio Medical industry- safety and electrostatic hazards	3	Ι	3	1,4,5

Session	Description of Topic	Contact hours	I-0	IOs	Reference
	Total contact hours		45		

LEARN	ING RESOURCES								
Sl. No.	TEXT BOOKS								
7.	Naidu.M.S, and Kamaraju, "High Voltage Engineering", Tata McGraw Hill, 2014.								
8.	adhwa.C.L, "High Voltage Engineering" New age international publishers LtdNew Delhi 2010.								
	REFERENCE BOOKS/OTHER READING MATERIAL								
9.	Ravindra Arora, Wolfgang Mosh, "High Voltage and Electrical Insulation Engineering", Wiley-IEEE Press								
	2011.								
10.	G.V. Barbosa – Canovas, "Pulsed electric fields in food processing: Fundamental Aspects and applications"								
	CRC Publisher Edition March 1 2001.								
11.	H L M Lelieveld and Notermans.S,et.al., "Food preservation by pulsed electric Fields: From research to								
	application", Woodhead Publishing Ltd. October 2007.								

Course natu	re			Theory					
Assessment	ssessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
	End semester examination Weightage : 50%								

15EE363E		Power Converter Analysis an	L 3	Т 0	P 0	C 3		
Co-requisite:	NIL				•			
Prerequisite:	15EE	5EE301J						
Course Category	Е	PROFESSIONAL ELECTIVE	ELECTRONICS					
Course designed by	Depa	epartment of Electrical and Electronics Engineering						
Approval	32nd	nd Academic Council Meeting, 2016						

PURPOSE To acquire knowledge on configurations, analysis, design and control of power converters.										
INSTRUCTIONAL OBJECTIVES				STUDENT OUTCOMES						
At the e	nd of the course, student will be able to									
1.	Know the basics of snubber and drive circuits design	а	e							
2.	Develop the knowledge on analysis and design of power converters	а	e							
3.	Design various types of controller	а	e	h	j	k				
4.	Understand the operation and design of resonant converter	а	e	h	j	k				

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: SNUBBER AND DRIVE CIRCUITS	9			
1.	Design considerations: Snubber circuit for power switching devices	1	C	1	1,3
2.	Thermal design: temperature control, Heat sink	2	С	1	1,3
3.	Gate Trigger Circuits for Thyristors	2	С	1	1.3
4.	Base drive circuits for BJT and Gate drive circuit for MOSFET	2	С	1	1,6
5.	Practical converter design considerations	2	D	1	1,2,6
	UNIT II: ANALYSIS AND DESIGN OF DC- DC CONVERTERS	9			
6.	Classification of DC-DC converters. Analysis of buck, boost in continuous and discontinuous operations	2	C	2	1,4,5
7.	Analysis of buck- boost, Cuk and Sepic converters in continuous and discontinuous operations	2	С	2	1,4
8.	Analysis of Forward, Fly back ,half bridge and full bridge isolated converters	2	C	2	1,4
9.	Design of isolated and non-isolated DC-DC converters	2	C,D	2	1,4,5
10.	Estimating the Output Voltage Ripple in Converters Containing Two-Pole Low-Pass Filters, Input and output filter design	1	C,D	2	1,4
	UNIT III- ANALYSIS AND DESIGN OF MULTILEVEL INVERTERS	9			
11.	Multilevel concept, Classification of multilevel inverters	1	C	2	1,2
12.	Diode clamped, improved diode Clamped, Flying capacitors multilevel inverter analysis.	2	С	2	2
13.	Design of multilevel inverters	2	C,D	2	1,2
14.	PWM for multilevel inverters	2	С	2	1
15.	Influence of PWM techniques on switching loss, design of PWM for low inverter loss	2	C	2	1
	UNIT IV-DESIGN OF CONVERTER CONTROL	9			
16.	Control and analysis of voltage mode and current modes.	2	C	3	2
17.	Review of different controllers used in power electronic converters	3	C	3	2
18.	Introduction to controller design	1	С	3	1,2,6
19.	Sliding Mode Control of Power Converters, Fuzzy Logic Control of Power Converters	3	C,D	3	6,2
	UNIT V-RESONANT CONVERTERS	9			

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
20.	Principles of resonant converters, Classical series resonant and parallel resonant converters	2	С	4	2,4,6
21.	Quasi-Resonant Converters	1	С	4	2,4
22.	Multi resonant Converters, Zero-Voltage- Transition (ZVT) Converters	2	С	4	2,4,6
23.	Zero-voltage and Zero-current switching	2	С	4	2,4
24.	Resonant converter design techniques based on frequency response.	2	C,D	4	2,4
	Total contact hours	45			

LEARN	ING R	ESOURCES							
Sl. No.	TEXT	BOOKS							
1.	Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics Converters, Applications, and								
	Design", Wiley India Pvt Ltd, Third Edition, 2011.								
2.	Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition,								
	2011.								
	REFERENCE BOOKS/OTHER READING MATERIAL								
3.	Umanand.L, "Power Electronics Essentials and Applications", John Wiley & Sons, First Edition 2009.								
4.	Erickson R. W. and Maksimovic .D, "Fundamentals of Power Electronics", Kluwer Academic Publishers,							blishers,	
	Second Edition, Reprint 2012.								
5.	http://www.peg.ee.iisc.ernet.in/people/faculty/vram/smpc/smpcbook.pdf-Course Material on Switched								
	Mode Power Conversion, V. Ramanarayanan 2008.								
6.	M.H. Rashid "Power Electronics Handbook", ISBN 978-0-12-382036-5, Elsevier Third Edition, 2011								
Course nature Theory									
Assess	ment M	ethod (Weightage 1	100%)						
In-semester		Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
		Weightage	10%	15%	15%	5%	5%	50%	
					End semester	examination	Weightage :	50%	

15 E F	365E	Modeling And Analysis	of Electrical	Machi	nes		L 3	<u>Т</u> 0	P 0	C 3
Co-requisite	2:	NIL					17		~	
Prerequisite		15EE210								
Course Cate		P PROFESSIONAL ELECTIV	E ELI	ECTRI	CAL	MACH	IINE	S		
Course desi	0 1	Department of Electrical and Electric			CITE					
pproval	gneuby	32^{nd} Academic Council Meeting 20		cing						
pprovai	Т	b acquire a comprehensive knowled		notical	mod	laling (nda	nolu	is of a	laatri
PURP	m m	achines.	ge on mathem	natical						
	IONAL OF					STUDI	INT		COM	ES
		student will be able to								
		various parameters of electric	al machines	s in	а	с				
	ematical form				a					
Learn	the different	t types of reference frame theories a	and transform	ation	а	с				
	onships.				u	C				
. Famili	iarize the n	nodeling of electrical machines th	hrough equiv	alent	а	с	e			
circui	t parameters.				a	C	C			
a •			C 4 4			ю				
Session		Description of Topic	Contact	C-I		IOs		F	leferen	ces
			hours	0)					
		ENERALIZED MACHINE	9							
	THEORY									
1.		and continuous description of	1	0	2	3			1	
		windings of electrical machines								
2.	Air-gap m	agnetomotive force and rotating	2	С,	D	1			1	
	mmf in ele	ctrical machines								
3.	Elements of	f generalized circuit theory used in	1	С,	D	1,3			1,2,3,4	4
		nachines (resistance, inductance)		í í		,		-,-,-,-,		
4.		and flux linkage equations for	2	D)	1,3		1,2,3,4		4
		winding induction machine	_	_		-,-			-,_,_,	
5.		age equations for distributed	2	D	`	1,3			1	
5.		inchronous machine	2	L	`	1,5			1	
6.	Kron's pri	nitive machine	1	Г	<u> </u>	1		2,4		
0.		REFERENCE FRAME	9	L	,	1			2,4	
	THEORY	REFERENCE FRAME	7							
7.		of transformation: change of	1	С,	П	1,2			1,2	
7.		rom stationary circuit elements to	1	C,		1,2			1,2	
		y reference								
8.		circuit variables transformed to the	3	0	D	1.0			1.0	
8.			3	С,		1,2			1,2	
		eference frame (resistive elements,								
^		elements, capacitive elements)	-	~					1.0	
9.		used reference frames (arbitrary	1	С,	D	1,2			1,2	
		frame, stationary reference frame,								
		ence frame, synchronously rotating								
		frame) - Transformation of a								
		et (abc to dq)								
10.		steady-state phasor relationships	1	С,	D	1,2			1,2	
	between a	bc and dq frames and its voltage								
	equations									
11.		observed from several frames of	1	С,	D	1,2	T		1,2	
	reference	(arbitrary reference frame,								
	stationary	reference frame, rotor reference								
	frame, sy	nchronously rotating reference								
	frame)									
12.	,	ation between reference frames	1	D)	1,2			1	
13.		transformations for unbalanced	1	С,		1,2			1	
	system		-	<i></i> ,	-	-,-			-	
		INDUCTION MACHINES	9		\rightarrow					
14.		quations of induction motor in	2	С,		1,2,3	2		1,2,3,4	4
14.	-	ariables form	2	Ľ,		1,2,	,		1,2,3,	-
	moohmo									
15.		quation of induction motor in	1	С,	D	1,2,3	2		1,2,3,4	1

In-seme	ester	Weightage	10%	15%	15%			5%	5%	50%
In-semester		Assessment tool	Cycle test I	II	Cycle Tes	st III		Cest	Quiz	Total
Assessn	nent Me	ethod (Weightage 1		Cycle test			S111	rprise		
Course	nature				Th	eory				
	Edition	-	ngəicy, Ji, all			<i>necin</i>	c muc	minery,		v 1111, 30
3. 4.		shnan, " <i>Electric Mot</i> itzgerald, Charles Ki								
2.		mbhra, "Generalize								
		RENCE BOOKS/C								
	John V	Viley, Third Edition,	2013.		•					
1.	Paul C	Krause, Oleg Was		S, Sudhoff	, "Analysis o	of Elec	ctric M	<i>lachiner</i>	y and Drive	Systems
Sl. No.		BOOKS								
EARNI	NG R	ESOURCES								
	Т	otal contact hours						45		
32.	-	orque control using		method	1	С	,D	1,3	1	l
		ermanent-magnet ac					*	,-		
31.		ermanent magnet syn nase shifting of a			2	C	,D	1,3		<u> </u>
30.	А	torreference-frame v nalysis of stead	y-state oper		2	C	,D	1,2,3	1	1
29.	m	agnet synchron	ous mach		2	Ċ	,D	1,2,3	1,2,	3,4
	m va	agnet synchronous ariables	machine in	machine						
28.		YNCHRONOUS MA		permanent	2		,D	1,2,3	1,2,	34
		uring sudden change			9					
27.	D	tator currents positivy ynamic performance	of synchron	ious motor	1	C	,D	1,2,3]	1
26.	G	nchronous machine enerator operation	of synchron		1	C	,D	2,3	1	[
25.	A	nalysis of stead		ration of	2	C	,D	1,2,3	1	l
24.	Т	orque equations of tor reference frame			1	C	,D	1,2,3]	[
	m	achine in arbit ariables and rotor ref	rary refere	nce-frame			,	, ,-	7 7	
23.	m	achine variables for ator voltage equa	ns		2		,D	1,2,3	1,2,	
22.		achine variable form orque equation of s		nachine in	1	C	,D	1,2,3	1.2.	3,4
21.	V	oltage equations of s	ynchronous		1	C	,D	1,2,3	1,2,	3,4
		NIT IV: SYNCHRO			9					
20.		ynamic performanc 1ring sudden change			1	C	,D	1,2,3	1,	3
19.		ree acceleration chan otor	acteristics of	induction	1		С	1,3	1,	3
	in	nalysis of stead duction motor								
18.	in va	duction motor in ar	bitrary refere	nce-frame	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,2,3		
17.		induction motor oltage equations ar	nd torane ear	uations of	2	C	,D	1,2,3	12	3,4

15EE367E	Design Of Electrical Machines			L 3	T 0		P 0		
Co-requisite:	NIL				v				-
Prerequisite:	15EE204,15EE210								
Data Book /	NIL								
Codes/Standards									
Course Category	P PROFESSIONAL ELECTIVE ELEC	TRICAL	_ MA	ACHI	NES				
Course designed by	Department of Electrical and Electronics Enginee	ering							
Approval	32 nd Academic Council Meeting, 2016								
		4 4	£ .1	4					
PURPOSETo impart theINSTRUCTIONALOBJE	he knowledge on the concepts of design of differen	t types o							-
			51	UDEr	O TI	UI		VIES	,
	ident will be well versed with			1			\vdash		
	hermal rating of various types of electrical machine	es.	a	<u>b</u>	с	e	\vdash		
2. Design of DC machines			a	b	с	e			
3. Design of AC machines			а	b	с	e	\vdash		
4. Computer aided design	of Rotating Electrical machines		a	b	с	e			
Session	Description of Topic	Contac hours		C-D- I-O	IOs]	Refe	renc	ce
LINIT I. INTOOD	UCTION TO DC MACHINES	10		-0		_			
	ons in Electrical Machine Design - Electrical	10	_	С	1	+	1	,3	
-	rials – Space factor – Choice of Specific	1		C	1		1	,5	
	ations - Heat flow - Temperature rise - Rating of	1		С	1	1,3			
	tput Equations – Design of main dimensions	2		С	2		1	,3	
	alculations – Carter's Coefficient - Net length of	2		C	2			,3	_
-	parent flux densities.			-					
	er of poles – Design of Armature	2		С	2		1	,3	
6. Design of commut		2		C	2			,3	
UNIT II: TRANS		9		-					
	– Main Dimensions - kVA output for single and	2		С	3		1	,3	_
three-phase transfe		_		C	2		-	,0	
	tor – Overall dimensions	2		С	3	3 1,3			
	eristics – Regulation – No load current-	2		С	3			,3	
	Methods of cooling of Transformers	3		С	3		1	,3	
UNIT III: INDUC		9						,	
	f Induction motor – Design of main dimensions –	2		С	3		1	,3	
Length of air gap				0	-			2	
	grotor slots of squirrel-cage machines	2		C	3	+		,3	
	rs and slots – Design of end rings	4		C C	3	+		,3	
14. Design of wound i		1		U	3	_		,3	
	IRONOUS MACHINES – run away speed – output equation, choice of	9 2		С	3	+	1	,3	
specific loading	- shape of pole face – Armature design –	3		$\frac{c}{c}$	3			,3 .,3	
Armature parameter	ers								
	ap length–Design of field system	3		C	3	+		,3	
18. Design of turbo al		1		С	3		1	,3	
ELECTRICAL N		8							
	al versus Computer aided design - Approach to esign – Design synthesis	3		С	4		2	2.3	_
20. Special Requirementation aided design in inc	nts – Program for Different machines –Computer lustry			С	4		2	2,3	
	– limitations in Computer aided designs	2		С	4	Ì	2	2,3	
					45				\rightarrow

ING RESOURCES						
TEXT BOOKS						
Sawhney, A.K., "A Course in Electrical Machine Design", Dhanpat Rai & Sons, New Delhi, 2013						
Deshpande, M.V." Design and Testing of Electrical Machines", PHI learning Pvt Ltd', 2015						
REFERENCE BOOKS/OTHER READING MATERIAL						
A.Shanmugasundaram, G.Gangadharan, R.Palani "Electrical Machine Design Data Book", New Age						
Intenational Pvt. Ltd., Reprint 2007						
Rai.H.M, "Electrical Machine Design", Sathiya Prakashan Publications, Third edition, 2004						

Course natur	re			Theory						
Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15EE451E	Power System Dynamics	L T P C 3 0 0 3					
Co-requisite:	NIL						
Prerequisite:	15EE304,15EE402						
Data Book / Codes/Standards	NIL						
Course Category	P PROFESSIONAL CORE POWER SYSTEMS						
Course designed by	Department of Electrical and Electronics Engineering	Department of Electrical and Electronics Engineering					
Approval	32 nd Academic Council Meeting, 2016						

P	URPOSE	To become familiar with the modeling of components and system for carrying out transient stability analysis of large scale power systems.									
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES											
At t	the end of th										
1.	1. Learn the modeling of synchronous machines.										
2.	2. Design the controller for excitation systemand speed governing system.				e	h					
3.						h					

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: INTRODUCTION	7			
1.	Introduction - Stability of simple systems, power systemstability Manifestation - causes nature and effects of disturbance.	1	С	3	1,3
2.	Classification of power systemstability, characterization of rotor angle stability.	2	C	3	1,3
3.	Damping and synchronizing torques, power systemdynamics, electromechanical and electromagnetic transients – nature of equations and solution methods.	2	C,D	3	1,3
4.	Short term and long term stability of generator and load driven stability.	2	C	3	2
	UNIT II: SYNCHRONOUS MACHINE MODELING	10			
5.	Three phase synchronous machine – basic equations, schematic of seven winding model, flux linkage equations.	1	C,D	1	1
6.	Parks transformation matrix – flux linkage and voltage equations in park's coordinates expression for electrical torque.	2	C,D	1	1
7.	Equivalent circuit and phasor diagram, synchronous machine model for stability analysis, assumptions.	2	C,D	1	1
8.	Model described by constant and variable voltage behind transient reactance.	2	C,D	1	1
9.	Type 1A and 1B models and equation, modeling of mechanical part, acceleration and swing equation.	3	C,D	1	1
	UNIT III: MODELING OF EXCITATION AND TURBINE – GOVERNOR	10			
10.	Functional block diagram of an excitation system, classification of excitation systems	1	C,D	2	1.2,3
11.	DC excitation systemand IEEE block diagram for type-lexcitation systems, separately excited exciter block equation	2	C,D	2	1,2,3

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
12.	Functional block diagram of steam turbine, equations of single reheat tandem – compounded steam turbine	3	C,D	2	1
13.	Speed governing systems, steady state speed regulation characteristics, secondary control characteristics of speed governing ems	3	C,D	2	1
14.	Classification of hydraulic turbines and simplified model of hydraulic turbine	1	C,D	2	1
	UNIT IV: SMALL SIGNAL STABILITY ANALYSIS	9			
15.	Introduction – the SMIB system – generator represented by classical model, expression for air gap power and torque, state equations and block diagram.	2	C,D	3	1
16.	Numerical example: SMIB system-type 1B synchronous machine, network equations, block diagram analysis, torque phasor diagram	2	C,D	1,3	1
17.	Simplified block diagram of excitation system – K constants effect on synchronizing and damping torque, torque phasor diagram at the rotor oscillation frequency.	3	C,D	2.3	1,2,3
18.	Power system stabilizer-principle, block diagram, application of excitation system with PSS and including delta P – omega stabilizer	2	C	3	1
	UNIT V: TRANSIENT STABILITY	9			
19.	Types of algorithm for transient stability analysis using trapezoidal rule of integration	2	C,D	3	1
20.	Simplified analysis with ITAM – assumptions, algorithm to advance simulation by one time step, initialization of state, algebraic and memory variables	4	C,D	3	1
21.	Selected methods of enhancing transient stability – fast valving, controlled system of operation and single -pole switching	3	C,D	3	1
	Total contact hours			45	

NG RESOURCES
TEXT BOOKS
Kundur.p, "Power System Stability and Control", McGraw Hill Inc., USA, 1994
R.Ramunujam, "Power system dynamics - analysis and simulation" PHI Learning, New
Delhi,November2013
REFERENCE BOOKS/OTHER READING MATERIAL
Pai.M.A and Sauer.W,"Power System Dynamics and Stability",Pearson Education Asia,India,2002

Course nature				Theory						
Assessment Method (Weightage 100%)										
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15EF452E		Modern Power System Analys	L	Т	Р	С			
		woller i over system murys	3	0	0	3			
Co-requisite:	Nil								
Prerequisite:	15EE	304							
Data Book /	Nil	NT'1							
Codes/Standards	INII								
Course Category	E	PROFESSIONAL ELECTIVE PC	OWER SYSTEMS						
Course designed by	Depa	Department of Electrical and Electronics Engineering							
Approval	32 nd	32 nd Academic Council Meeting, 2016							

]	PURPOSE To acquire ability to analysis power systemproblems and state estimation numerical tools.						vario	us			
INST	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES										
At the		se, the student will be able to									
4.	4. Learn the algorithms for computing network matrices										
5.	Understand the optimal power	use of numerical methods for power flow analysis and flow analysis	а	e	h	j					
6.	Analyze the co Power systems	ntingency, Stability and state estimation problems in	а	e	h	j					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: PRELIMINARIES FOR POWER SYSTEM PROBLEMS	7			
1.	Modeling of generators, transformers	1	С	1	2
	Off nominal tap setting and phase shifting				
2.	transformers, transmission lines and load, Per unit quantities	1	С	1	2
3.	Primitive parameters - Bus admittance matrix	1	С	1	2
4.	Bus impedance matrix	1	С	1	2
5.	Solution through factored matrices	1	С	1	2
6.	Solution of non-linear algebraic equation and non- linear differential equations	2	С	1	2
	UNIT II: POWER FLOW ANALYSIS	9			
7.	Formulation of power flow problem	1	С	2	1,5,6
8.	Solution through Newton Raphson method	3	С	2	1,5,6
9.	Decoupled and fast decoupled power flow solutions, DC power flow solution	2	С	2	1,5,6
10.	Power flow solution using FACTS devices	1	С	2	1,5,6
11.	Optimal power flow solution	2	С	2	1,5,6
	UNIT III: CONTINGENCIES ANALYSIS	9			
12.	Importance of contingency analysis	1	С	3	1
13.	Addition/removal of one line	2	С	3	1
14.	Construction of a column of bus impedance matrix from the bus admittance matrix	2	С	3	1
15.	Calculation of new bus voltages due to addition/removal of one line	2	С	3	1
16.	Calculation of new bus voltages due to addition/removal of two lines.	2	С	3	1
	UNIT IV: TRANSIENT STABILITY ANALYSIS	10			
17.	Swing equation - equal area criterion	1	С	3	1,4,6
18.	Critical clearing angle - critical clearing time	1	С	3	1,4,6
19.	Multi-machine transient stability studies by classical representation	3	С	3	1,4,6
20.	Solution of swing curve and algorithms for multi- machine transient stability studies using Modified Euler's method	3	С	3	1,4,6
21.	Algorithm for multi-machine transient stability studies using Fourth order Runge Kutta method	2	С	3	1,4,6

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference	
	UNIT V: POWER SYSTEM STATE ESTIMATION	10				
22.	Introduction to Power system state Estimation	2	С	3	1,3	
23.	Method of weighted least square for DC circuits	2	С	3	1,3	
24.	Maximum Likelihood Estimation-Measurement Model	2	С	3	1,3	
25.	Measurement Jacobian matrix-Gain matrix	2	С	3	1,3	
26.	26. Development of WLS algorithm-solution procedure		С	3	1,3	
	Total contact hours	45				

Sl. No.	TEXT BOOKS
4.	John.J.Grainger, William D. Stevenson, Jr, "Power System Analysis", Mc Graw Hill Education (India)
	Private Limited, New Delhi, 2015.
5.	William D. Stevenson, Jr., "Elements of Power System Analysis", McGraw-Hill Hill Education (India)
	Private Limited, New Delhi, 2014.
6.	Ali Abur and A.G.Exposito," Power System State Estimation-Theory and Implementation", Maecel
	Dekker,Inc.,2004
	REFERENCE BOOKS/OTHER READING MATERIAL
7.	Kothari D.P. and Nagarath I.J., "Power System Engineering", Second Edition, Mc Graw Hill Education
	(India) Private Limited, New Delhi, 2015.
8.	Hadi Sadat, "Power System Analysis", Tata Mc Graw Hill Publishing company, New Delhi, 2002.
9.	Pai M.A. and Dheeman Chatterjee "Computer Techniques in Power System Analysis", Mc Graw Hill
	Education (India) Private Limited, New Delhi, 2016.

Course natu	Course nature Theory									
Assessment	Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
				End semest	er examination	Weightage :	50%			

15EE453E		Power System Deregulation					С
15EE455E		Power System Deregulation				0	3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book /	NIL						
Codes/Standards	INIL						
Course Category	Р	PROFESSIONAL ELECTIVE	POWER SYSTEMS				
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32 nd	Academic Council Meeting, 2016					

P	PURPOSE To study the various role of entities in restructured and deregulated power system										
INS	TRUCTIONAL OBJECTIVES	STUDENT OUTCOMES									
At t	he end of the course, student will be able to										
	1. Understand the basics of deregulation, power systemeconomic operation and its benefits										
2.	Learn the role of independent systemoperator	а	с	e	h	j					
3.	3. Understand the transmission services		с	e	h	j					
4.	Acquire knowledge on security and congestion management	а	с	e	h	j					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: INTRODUCTION TO DEREGULATION	9			
1.	Introduction- Deregulation- Different entities in deregulated electricity markets	2	С	1	1,2
2.	Background from competitive electricity markets - After effects of deregulation	2	C	1	1,2
3.	Review of Economic Load Dispatch problem (ELD)	3	С	1	1,2
4.	Recent developments in ELD	2	С	1	1,2
	UNIT II: POWER SYSTEM ECONOMIC OPERATION	9			
5.	Optimal power flow (OPF) as a basic tool- OPF model- Examples	3	С	1	1,2
6.	Characteristic features of OPF	1	С	1	1,2
7.	Unit commitment- basic model, additional issues	2	С	1	1,2
8.	Formation of power pools- Energy Brokerage system.	3	С	1	1,2
	UNIT III: ROLE OF INDEPENDENT SYSTEM OPERATOR	9			
9.	Role of Independent systemoperator (ISO) - structure of UK and Nordic Electricity deregulated market	1	С	2	1,2,3
10.	Operational planning activities of ISO- ISO pool and bilateral markets	3	С	2	1,2,3
11.	Operational planning activities of GENCO - GENCO in pool and bilateral markets - Market participation issues	3	С	2	1,2,3
12.	UC in deregulated environment- Competitive bidding.	2	С	2	1,2,3
	UNIT IV: TRANSMISSION PRICING	9			
13.	Power wheeling- Transmission open access	2	С	3	1,2,4
14.	Cost components in transmission pricing of power transactions and embedded cost based transmission pricing	3	С	3	1,2,4
15.	Incremental cost based transmission pricing	3	С	3	1,2,4
16.	Transmission open access and pricing mechanisms in various countries	1	C	3	1,2,4
	UNIT V: SECURITY AND CONGESTION MANAGEMENT	9			

17.	Developments in international transmission pricing- Security management in deregulated environment- scheduling of spinning reserves	3	С	4	1,2,5
18.	Interruptible load options for security management	3	С	4	1,2,5
19.	Congestion management in deregulation	2	С	4	1,2,5
20.	20. Economic instruments for handling congestion.		С	4	1,2,5
	Total contact hours			45	

LEARN	NING RESOURCES
Sl. No.	TEXT BOOKS
1	Kankar Bhattacharya," Operation of Restructured Power Systems", Kluwer academic publishers, 2001.
2	Mohammad Shahidehpoura and Muwaffaq A lomoush "Restructured Electric Power System operation
2	trading and volatility", Macsel Dekker Inc, 2001
3	Zaccour.G. "Deregulation of Electric Utilities", Kluwer academic publishers, 1998
	REFERENCE BOOKS/OTHER READING MATERIAL
4	Sally Hunt, "Making competition work in electricity", John Willey and Sons Inc. 2002.
5	Steven Stoft, "Power system economics: designing markets for electricity", John Wiley & Sons, 2002

Course natur	Course nature Theory								
Assessment	ssessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
				End semest	er examination	Weightage :	50%		

15EE454E	Distributed Energy Resources					Р	С
1524542		Distributed Energy Resources	3	0	0	3	
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book /	NIL						
Codes/Standards	INIL						
Course Category	Р	PROFESSIONAL ELECTIVE POW	ER SYSTEMS				
Course designed by	Depar	epartment of Electrical and Electronics Engineering					
Approval	32 nd A	cademic Council Meeting, 2016					

		o understand the different types of non-conventional omass, ocean, tidal and wave sources and the conversion				es lik	e so	lar, v	vind,
INST	RUCTIONAL OB	JECTIVES	S	STUD	ENT	OUT	COM	IES	
At the	At the end of the course the student will be able to								
1.	Understand the co	oncept of various Non-conventional energy resources	а						
2.		knowledge of the conversion of non-conventional nto Electrical power.	а	с					
3.	Learn the latest de	velopments of renewable Energy studies.	а	e	h				
4. Attain knowledge in Green Energy Technologies					h	j			

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I: Non conventional energy resources	09			
1.	Definition, Concepts of Non Conventional Energy Sources, Limitations of Non Conventional Energy Sources	2	С	1	1
2.	Energy needs of India, and energy consumption patterns. Worldwide Potentials of these sources. Energy efficiency and energy security	2	С	1,2	2
3.	Energy and its environmental impacts	2	С	3	2
4.	Technical and Economical impact of Distributed generation.	2	C	4	3
5.	Classification of NCES, Solar, Wind, Geothermal, Biomass, Ocean energy sources, Comparison of these energy sources	1	С	4	3
	UNIT II: Solar Energy	09			
6.	Definition, Energy available from Sun, Solar radiation data, solar energy conversion in to heat	2	С	1	1
7.	Flat plate and Concentrating collectors, Principle of natural and forced convection	2	С	2	1
8.	Energy Storage systems. Case studies of Solar thermal systems for residential water heating, industrial heating and power generation	2	С	3	3
9.	Maximum Power Point Tracking, Battery Characteristics	1	C	2	3
10.	DC Power Conditioning Converters, AC Power Conditioning –Inverters, Testing of PV systems	2	С	1	2
	UNIT III: Wind Energy	09			
11.	Energy available from wind, General formula, Lift and drag. Basis of Wind energy conversion, Effect of density, Frequency variances, Angle of attack, Wind speed,	1	С	1	1,2
12.	Windmill rotors, Horizontal axis and Vertical axis rotors	2	С	1,2	1,3
13.	Choice of generators, turbine rating, electrical load matching	2	C	1,2	2
14.	Variable speed operation, maximum power operation, control systems, systemdesign features, stand alone and grid connected operations	2	С	2	3
15.	Determination of torque coefficient, Induction type generators, Working principle of wind power plant	2	C	1,3	1

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT IV: Biomass, Wave, Tidal Energy Systems	09			
16.	Biomass Conversion Routes - Combustion, Gasification, Anaerobic Digestion, Pyrolysis, Cogeneration	2	С	1	1
17.	Performance analysis and testing, Case studies of		С	1,4	2
18.	Difference between tidal and wave power generations. Principles of tidal and wave power generations	2	C	2	2
19.	OTEC power plants	2	С	1,3	1
	UNIT V: Energy storage and hybrid system configurations	09			
20.	Energy storage, Battery – types, equivalent circuit, performance characteristics	1	C	1	1
21.	Battery design, charging and charge regulators	2	C,D	1	1
22.	Battery management	2	С	1,2	3
23.	Flywheel-energy relations, components, benefits over battery	2	C	3	3
24.	Fuel Cell energy storage systems. Ultra Capacitors	2	С	3	3,4
	Total contact hours		4	5	

Sl. No.	TEXT BOOKS
10.	Rai ,G.D.,"Non Conventional sources of Energy", Khanna Publishers ,5th Edition, 2016.
11.	Rao. S. & Pamlekar Dr.B.B. "Energy Technology", Khanna Publishers, 3rd Edition, 2016
	REFERENCE BOOKS
12.	Khan. B.H, "Non-Conventional Energy Resources", The McGraw Hills, Second edition, 2016.
13.	D.P.Kothari, "Renewable Energy Sources and Emerging Technologies", PHI Learning Private Limited, 4th
15.	Edition 2011.
14.	Bansal NK, Kleeman and Meliss M "Renewable energy sources and conversion Techniques", Tata Mc
17.	Graw Hill, 1990 .

Course natu	Course nature Theory								
Assessment	Assessment Method (Weightage 100%)								
In-	In- Assessment tool Cycle test I Cycle test II Cycl				Surprise Test	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%		
	End semester examination Weightage : 50								

15EE455E		Smart Grid		L 3	Т 0	P 0	C 3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	E	PROFESSIONAL ELECTIVE	POWER SYSTEMS				
Course designed by	Depa	rtment of Electrical and Electronics Er	ngineering				
Approval	32 nd	Academic Council Meeting, 2016					

PURPO	PURPOSE To equip the students with the fundamental knowledge on the							
INSTR	UCTIONAL OBJECTIVES	S	TUDE	INT	OUT	CON	IES	
At the	end of the course, the student will be able to							
1.	Understand the challenging issues and architecture of smart grid	a	h	j				
2.	Understand the communication and wide area monitoring in smart grid	а	h					
3.	Rudimentary energy management issues in smart grid	а	h	j	k			
4.	Acquire the knowledge in computational intelligence and security issues in smart grid	a	h	j	k			
5.	Know the role of Power electronics and energy storage in smart grid	a	h	j				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I:SMART GRID ARCHITECTURE	8			
1.	Challenges in power grid	1	C	1	1,2,5
2.	Advantages of building integrated and distributed power systems - concept of smart grid	1	С	1	1,2,5
3.	Need for smart grid	1	C	1	1,2,5
<u> </u>	Smart grid components and their limitations	1	C	1	1,2,5
4. 5.	Grid vision based on intelligent architecture	1	C	1	1,2,5
5. 6.	Whole sale energy market in smart grid	1	C	1	1,2,5
6. 7.	Stack holders roles and function	_	C		
7. 8.		1	C	1	1,2,5
8.	Approach to smart grid interoperability standards.	1	C	I	1,2,5
0	UNIT II: COMMUNICATIONS AND MEASUREMENTS	10	0	2	105
9.	Latest wired and wireless technologies	1	C	2	1,2,5
10.	Characteristics of smart grid communications technology and communication techniques	1	C	2	1,2,5
11.	Switching techniques and communication channels	2	C,D	2	1,2,5
12.	Wide area monitoring systems	1	C	2	1,2,5
13.	Phasor measurement units	1	C	2	1,2,5
14.	Key components of smart metering	1	C	2	1,2,5
15.	Communication infrastructure and protocols for smart metering	1	С	2	1,2,5
16.	Advanced metering infrastructure	1	С	2	1,2,5
17.	Multi agent systems for smart grid implementation	1	С	2	1,2,5
	UNIT III: PERFORMANCE ANALYSIS TOOLS	9			, , ,
18.	Load flow studies for smart grid	1	С	3	1,2
19.	Extended formulations and algorithms	2	C,D	3	1,2
20.	Security assessment in smart grid	2	Ċ	3	1,2
21.	Contingency studies for smart grid	1	С	3	1,2
22.	Voltage stability in smart grid	2	С	3	1,2
23.	Energy management in smart grid.	2	С	3	1,2
	UNIT IV: COMPUTATIONAL TOOLS AND SECURITY	9			,
24.	Introduction to computational tools	1	С	4	1,2,3
25.	Optimization techniques and applications to smart grid	2	C,D	4	1,2,3
26.	Evolutionary computation techniques and computational challenges	2	C,D	4	1,2,3
27.	Network security: Encryption and decryption	2	Ċ	4	1,2,3
28.	Network and systemattacks	1	С	4	1,2,3
29.	Authentication and cyber security standards	1	С	4	1,2,3
	UNIT V: RENEWABLE ENERGY AND STORAGE	9	l		
30.	Benefits of renewable generation	1	С	5	3,4
31.	Importance of micro grid	1	С	5	3,4

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
32.	Demand response issues	2	С	5	3,4
33.	PHEV technology	1	С	5	3,4
34.	Energy storage technologies	2	С	5	3,4
35.	Grid integration issues of renewable energy sources	2	С	5	3,4
	Total contact hours	45			

LEARN	ING RESOURCES
Sl. No.	REFERENCE BOOKS
1.	James Momoh, "Smart Grid – fundamentals of design and analysis", John Wiley and Sons, 2012
2.	Janaka Ekanayake, "Smart Grid-Technology and Applications", John Wiley and Sons, 2012
3.	Clark W. Gellings, "The Smart Grid- Enabling energy efficiency and demand response", CRC press,
	2009
4.	Fereidoon P.Sioshansi, "Smart grid-integrating renewable, distributed and efficient energy", Elsevier,
	2012
5.	Stuart Borlase,"Smart Grids, Infratructure, technology and solutions", CRC press, 2013

Course nature Theory									
Assessment M	Assessment Method (Weightage 100%)								
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
	Weightage	10%	15%	15%	5%	5%	50%		
	End semester examination Weightage : 5								

	15EE456E	Energy Management System and SC	CADA			T P C 0 0 3
Co-req	uisite:	Nil				
Prereq	uisite:	Nil				
Data B		Nil				
Codes/	'Standards					
	e Category	P PROFESSIONAL ELECTIVE Powe	er Syster	ns		
	e designed by	Department of Electrical and Electronics Engineerin	g			
Approv	val	32nd Academic Council Meeting, 2016				
DID	POSE To gain kno	wledge in energy management system and SCADA				
	UCTIONAL OBJE			STUDEN		TCOMES
		e student will be able to	,			
		mentals of energy management functions		ı h		
		mic analysis and system energy management for		1 11		
	lectrical system and		1	a c	h	
		ge in lighting and cogeneration.		ı h		
		t of supervisory control and data acquisition.		i h		
		ation of SCADA in power systems				
<u> </u>				. 11	I	
Sessio		Description of Topic	Contact	-	IOs	Reference
563510			hours	0	105	Reference
		Y MANAGEMENT FUNCTIONS	9			
1.		nanagement – energy management program	2	C	1-4	1,2
2.		g – Energy monitoring	1	C	1	1,2
3.	Targeting and Rep		1	C	1	1,2
4.	Energy audit proc		1	C	1	1,2
5.		ent Centers and their Functions	1	C	1	1,2
6.		Centers and their Functions	1	C	1	1,2
7.		ce assessment of HVAC system	2	C,D,I	1	1,2
	UNIT II: ECONO MANAGEMENT	OMIC ANALYSIS AND SYSTEM ENERGY	9			
8.		ts in an economic analysis, Electricity tariff	2	С	2	1,2
9.		anagement and Maximum Demand Control	2	С	2	1,2
10.		oment, Electric motors, Transformers	2	С	2	1,2
11.		factor and effect of harmonics on power quality	1	С	2	1,2
10	· · ·	analysis on electrical power system, motor and	2	a di la		
12.	transformer		2	C,D,I	2	1,2
	UNIT III: LIGHT	TING AND COGENERATION	9			
13.	Concept of lightin	g systems – the task and the working space	1	С	3	1,2
14.	Light sources – ba	Illasts –luminaries	1	С	3	1,2
15.	Lighting controls		2	С	3	1,2
16.	Optimizing lightin	g energy, lighting and energy standards	1	С	3	1,2
17.	Forms of cogener	ation – Feasibility of cogeneration	2	С	3	1,2
18.		ce analysis of lighting and cogeneration	2	C,D,I	3	1,2
	UNIT IV: SUPER	VISORY CONTROL AND DATA	9			
	ACQUISITION		9			
19.		nal requirements and Components	2	С	4	3,4
20.		Functions and Applications, Benefits	2	С	4	3,4
21.	Various SCADA a		2	С	4	3,4
22.		ication: various industrial communication	3	С	4	3,4
<i></i> .	technologies				-	5,-
		APPLICATIONS	9			
23.		ions: Utility Applications	2	C	5	3,4
24.		distribution sector-Operations, Monitoring,	2	С	5	3,4
	Analysis and impr					
25.	Substation automa		1	C	5	3,4
26.	Substation automa		2	C	5	3,4
27.	Introduction to wi	de area protection	2	C	5	3,4
		Total contact hours			45	

LEARNI	LEARNING RESOURCES						
Sl. No.	REFERENCES AND LEARNING MATERIALS						
1.	Wayne C. Turner, Steve Doty "Energy Management Hand book", The Fairmont Press, 6th Edition, 2007						
2.	Amit K. Tyagi, "Handbook on Energy Audits and Management", Tata Energy Research Institute, 2 nd reprint, 2003						
3.	Stuart A. Boyer: "SCADA- Supervisory Control and Data Acquisition", Instrument Society of America						
	Publications, USA, The Instrumentation systemand Automation Society, 4th Edition, 2010						
4.	Gordon Clarke, Deon Reynders" Practical Modern SCADA Protocols: DNP3, 60870.5 and Related						
	Systems", Newnes An imprint of Elsevier Publications, 1st Edition, 2004						
5.	www.energymanagertraining.com www.bee-india.nic.in						

Course natu	re			Theory			
Assessment	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
	End semester examination Weightage :						

15EE457E			Hybrid Electric	c Vehicles				L T 3 0	P 0	C 3
Co-requis	site:	NIL								
Prerequis	ite:	NIL								
Data Bool Codes/Sta		NIL								
Course Co	ategory	Р	PROFESSIONAL ELECTIVE	ELEC	TRIC	AL	MAC	HINES		
Course de	esigned by	Dep	artment of Electrical and Electron	ics Engineering	g					
Approval		32nd	Academic Council Meeting 2016							
	ele	ctric v	e knowledge on the fundamental or enclosed enclo	concepts, princ	_					
	CTIONAL OB				S	TUD	ENT (OUTCO	MES	
	l of the course,									
			electric transportation systems.		a					
			electric vehicle components and c		а	d				
			arging types, comfort and safety		а					
4. Uno	derstand the app	licatio	n of electric vehicle in Smart grid		a	d	j			
Session		Desc	ription of Topic	Contact hours	C-D I-O		lOs	Refe	rence	
	UNIT I: ELEC	CTRIC	VEHICLES	7						
1.	History of Mo			1	C		1]	,3	
2.	Strategies to F	uture C		1	C		1	1	,3	
3.	Introduction to and electric ve		c Vehicles, History of hybrid	1	C		1	-	,3	
	und cheetine ve	hicles.		1						
4.		menta	importance and key challenges vehicles.	2	C		1		,3	
4. 5.	Social, enviror of hybrid and e	nmenta electric of PHE	vehicles. Ws, BEVs, EVs, Plug-in Hybrid	-			1]	,3 ,2	
-	Social, enviror of hybrid and e Specifications	nmenta electric of PHE teristic	vehicles. Ws, BEVs, EVs, Plug-in Hybrid s.	2	C]	<i>.</i>	
5.	Social, enviror of hybrid and e Specifications Vehicle charac The future of e UNIT II: ENE TECHNOLOG	nmenta electric of PHE eteristic electric RGY GY	vehicles. Ws, BEVs, EVs, Plug-in Hybrid s. vehicles. STORAGE AND BATTERY	2	C C		1,2]	,2	
5.	Social, enviror of hybrid and e Specifications Vehicle charace The future of e UNIT II: ENE TECHNOLOC Introduction to	amenta electric of PHE eteristic electric RGY GY Energ	vehicles. Ws, BEVs, EVs, Plug-in Hybrid s. vehicles.	2 1 1	C C		1,2		,2	

С

С

С

С

С

С

С

С

С

С

С

С

С

С

1

2

1

1

1

1

1

9

1

1

1

1

2

2

1

9

2

2

2

2

2

2

2

2,3

3

3

3

3

3

3

4

4

4

4

4

4

4

1,2

2

2

2

2

2

2

EE-Engg&Tech-SRM-2015	

Types of batteries, Properties of batteries.

Maintenance and charging of batteries.

Diagnosing lead-acid battery faults.

Developments in electrical storage.

UNIT III: CHARGING AND STARTING

Requirements of the charging system, Charging

Alternators and charging circuits, Diagnosing

Advanced charging system technology, New

Advanced starting system technology, New

UNIT IV: HYBRID ELECTRIC VEHICLE

Requirements of the starting system, Starter motors

Types of starter motor, Diagnosing starting system

developments in charging systems.

developments in starting systems.

DRIVE TRAIN AND SAFETY

Advanced battery technology.

Working principle and construction of lead-acid,

nickel cadmium, nickel metal hydride, lithium ion

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

batteries.

Case studies.

SYSTEMS

and circuits

Case studies

faults

systemprinciples.

charging systemfaults.

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
22.	Requirement of drive train.	1	С	2	3,4
23.	Architecture of hybrid drive train.	1	С	2	3,4
24.	Sizing of components.	1	С	2	3,4
25.	Series configuration, Parallel configuration, parallel and series configuration.	2	С	2	3,4
26.	Security, Airbags and belt tensioners.	1	С	2	1,2
27.	Diagnosing comfort and safety system faults.	1	С	2	1,2
28.	Advanced comfort and safety systems technology	1	С	2	1,2
29.	New developments in comfort and safety systems	1	С	2	1,2
	UNIT V: EMERGING TECHNOLOGIES	11			
30.	Introduction	1	С	4	6
31.	Electric Vehicle Supply Equipments.	2	С	4	6
32.	Smart vehicles in smart grid.	1	С	4	6
33.	Vehicle-to-grid technologies: Unidirectional and Bidirectional.	2	С	4	6
34.	Need of Charging Station Selection (CSS) server	1	С	4	6
35.	Smart grid technologies: Applications / Benefits.	2	С	4	6
36.	Smart meter, Smart charger: Purpose and benefits.	2	С	4	6
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1.	M. Ehsani, Y. Gao, and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles:
	Fundamentals, Theory, and Design" Second Edition, CRC Press, ISBN: 978-1-4200-5398-2, Aug. 2009.
2.	Tom Denton," Automobile Electrical and Electronic Systems" Elsevier Butterworth-Heinemann, Third
	edition, 2004.
3.	A. Emadi, "Advanced Electric Drive Vehicles, CRC Press, ISBN: 978-1-4665-9769-3, Oct. 2014.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Iqbal Hussain, "Electric & Hybrid Vehicles – Design Fundamentals", Second Edition, CRC Press, 2011.
5.	James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.
6.	Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid:
	Technology and Applications", John Wiley & sons inc, 2012.

Course nature				Theory				
Assessment M	Assessment Method (Weightage 100%)							
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage : 5						50%		

15EE458E		Finite Element Analysis for Electri	L	T	P	С		
		5		3	0	0	3	
Co-requisite:	Nil							
Prerequisite:	15EE	205						
Data Book /	Nil							
Codes/Standards	INII							
Course Category	Р	PROFESSIONAL ELECTIVE	ELECTRICAL	MACH	NES			
Course designed by	Depa	Department of Electrical and Electronics Engineering						
Approval	32 nd ,	Academic Council Meeting, 2016						

PUR	POSE To acquire the knowledge of design in electrical machin	es						
INSTRUCTIONAL OBJECTIVES ST					OUT	CON	/IES	
At th	e end of the course, student will be able to							
1.	Understand basics of design considerations for electrical machines	а	с	e				
2.	Understand the field equations of electrical machines	а	e					
3.	Educate scientifically the new developments in software for designing the machines	а	k					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I - BASIC DESIGN CONSIDERATIONS	8			
1.	Introduction to CAD	1	С	1	1,2,3
2.	Conventional design procedures : output equations	1	С	1	1,2
3.	Specific loadings	1	С	1	1,2
4.	Variation of output and losses with dimensions- design criteria	2	C	1	1,2
5.	Limitations of conventional methods of design	1	С	1	1,2
6.	Engineering Optimization and Optimization Methodology	1	C	1	1,2
7.	Need for field analysis based design	1	С	1	1,2
	UNIT II: FINITE ELEMENT METHOD	10			
8.	Introduction to finite element method and its Assumptions	1	С	1-2	1,4
9.	Maxwell equations, - Finite difference method	2	D	2	1,4
10.	Finite Element method	1	D	2	1,4
11.	Variation method	1	D	2	1,4
12.	2D field problems - Discretisation - shape functions	2	D	2	1,4
13.	Stiffness matrix - Solution techniques	2	С	2	1,4
14.	Computers in Finite Element Analysis - applications of FEA.	1	С	2	1,4
	UNIT III: CAD PACKAGE	9			
15.	Elements of a CAD system - Preprocessing - Modeling - Meshing	1	D	1	2,3,5
16.	Material properties - Boundary conditions	1	D	1	2,3,5
17.	Solver – Post processing	1	D	1	2,3,5
18.	Considerations in problem modeling : stator and rotor model, model replication	2	D	1	2,3,5
19.	Air gap discretisation and simulation of rotation	1	D	1	2,3,5
20.	Calculations : Flux plots	1	С	1	2,3,5
21.	Calculations : Flux linkages – Inductance and Co- energy	2	C	1	2,3,5
	UNIT IV: INTRODUCTION TO MODEL BUILDING	11			
22.	Introduction to MagNet – model building	1	С	3	6
23.	Modeling flowchart – geometric modeling	2	D	3	6
24.	Drawing edges – creating surface	2	D	3	6
25.	Creating components	1	С	3	6
26.	Selecting edges surfaces and components	2	D	3	6
27.	Positioning the construction slice	1	D	3	6

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
28.	Material, boundary condition and finite element mesh	1	D	3	6
29.	Solving the model	1	D	3	6
	UNIT V: DESIGN APPLICATIONS	7			
30.	Introduction to software packages of Finite Element analysis such as MagNet, Motorsolve and its comparison	3	D	3	6
31.	Design of C-core using software	1	D	3	6
32.	Design of Inductance using software	1	D	3	6
33.	Design of SRM motor with 6:4 slots using software	1	D	3	6
34.	Design of 3-phase 6-pole BLDC Motor with 9- slots using software	1	D	3	6
	Total contact hours			45	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Silvester and Ferrari, "Finite Elements for Electrical Engineers" Cambridge University press, 1983.
2.	S.R.H. Hoole, "Computer - Aided, Analysis and Design of Electromagnetic Devices", Elsevier, New York,
	Amsterdam, London, 1989
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	D.A.Lowther and P.P.Silvester, "Computer Aided design in Magnetics", Springer Verlag, New York,
	1956.
4.	S.J.Salon, "Finite Element Analysis of Electrical Machines", Kluwer Academic Publishers, London, 1995.
5.	C.W.Trowbridge, "An Introduction to Computer Aided Electromagnetic Analysis", Vector field ltd.,
6.	Infolytica corporation, "MAGNET version 6.11.1 Getting Started guide"

Course natu	re			Theory						
Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15EF459E		Solar Photovoltaic Syste	Solar Photovoltaic Systems						
Co-requisite:	NII	_							
Prerequisite:	NII	_							
Data Book / Codes/Standards	NII	NIL							
Course Category	Р	PROFESSIONAL ELECTIVE	CIRCUITS AND SYS	TEM	S				
Course designed by	Dep	Department of Electrical And Electronics Engineering							
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016							

PUR	POSE To acquire knowledge on Photovoltaic and its applica	tions.						
INST	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						-	
At th	e end of the course, the student will be able to							
1.	1. Understand the principle of direct solar energy conversion to power using PV technology.							
2.	Comprehend the performance and operating characteristics of PV systemand its components	а	с	e	h	j		
3.	Understanding the design of photovoltaic systems for variety of applications.	а	с	e	h	j		

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: PHOTOVOLTAIC (PV) CELL	10			
1.	Historical development of PV –PV in world – Indian energy scenario Photovoltaic effect - Principle of direct solar energy conversion into electricity in a solar cell system.	3	С	1	1,2,3
2.	Solar cell - p-n Junction-Semiconductor properties-energy levels, basic equations and equivalent circuit.	2	С	1	1
3.	Solar cell- basic structure -crystalline, multi- crystalline, thin film silicon solar cells.	3	C	1	1,2,3
4.	Emerging new technologies and Characteristics-Single, Solar Cell Parameters.	2	C	2	1
	UNIT II: PV MODULE PERFORMANCE ANALYSIS	8			
5.	Solar PV Module, Specifications of Solar PV Module, PV Module Parameters, Parallel and series connections.	2	С	2	1,2
6.	I-V characteristics of a PV module, maximum power point-MPPT basic Algorithms.	3	C,D	2	1
7.	Cell efficiency, fill factor, effect of irradiation and temperature	3	C	2	1
	UNIT III: DESIGN OF PV SYSTEM	9			
8.	Classification -Central Power Station System, Distributed PV System-Stand alone PV System-Grid Interactive PV System	2	С	2	1
9.	Charge controllers -Batteries -Inverters	2	C,D	2	1
10.	Design of a standalone PV system-water pumping system	5	C,D	2	1
	UNIT IV: GRID TIED PHOTOVOLTAIC SYSTEMS	9			
11.	Principle components in Grid –PV system, Cost and Investment	2	C	2	1
12.	Classification of Grid Tie Inverters and Working Central inverter, String Inverter, Micro Inverter	3	С	2	2
13.	Sizing the inverter and efficiency, Metering Concepts in Grid Tie systems, Introduction to hybrid PV system.	4	C,D	2	1
	UNIT V: PV APPLICATIONS	9			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
14.	Building-integrated photovoltaic units, grid- interacting central power stations, stand-alone devices for distributed power supply in remote and rural areas.	3	С	3	5
15.	PV applications in aircraft, power satellites. Home lighting - solar water pumping systems	4	С	3	1
16.	Socio-economic and environmental merits of photovoltaic systems.	2	С	3	1
	Total contact hours	45			

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Chetan Singh Solanki., "Solar Photovoltaic: Fundamentals, Technologies and Application", PHI
	Learning Pvt., Ltd., 2 nd edition 2011
2.	R. Messenger, J. Ventre, "Photovoltaic Systems Engineering", CRC Press 3rd edition., 2010.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Jha A.R., "Solar Cell Technology and Applications", CRC Press, 2010.
4.	S.P. Sukhatme, J.K.Nayak., "Solar Energy", Tata McGraw Hill Education Private Limited, New Delhi,
	2010.
5.	Antonio Luque, Steven Hegedus,"Handbook of Photovoltaic Science and Engineering", Wiley 2nd
	Edition 2010.
6.	John R. Balfour, Michael L. Shaw, Sharlave Jarosek., "Introduction to Photovoltaics", Jones & Bartlett
	Publishers, Burlington, 2011.
7.	Michael Boxwell,"Solar Electricity Handbook : A simple, practical guide to solar energy - designing
	and installing solar PV systems" 2015.

Course nature Theory									
Assessment Method (Weightage 100%)									
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

	15E	E460E	Vehicular Power Systems					T 0	P 0		C 3
Co-re	quisite.	•	Nil				3	U	U		5
	quisite:		Nil								
	Book /		Nil								
Codes	s/Stand	ards	IN11								
Cours	se Cate	gory	E PROFESSIONAL ELECTIV	'E POW	YER SY	'STE	EMS				
Cours	se desig	ned by	Department of Electrical and Elect		ering						
Appro	oval		32nd Academic Council Meeting, 2	2016							
PURP	OSE	То асс	quire knowledge in power sources	for various veh	icles						
		ONAL OBJE			STU	DENT (DUT	COM	ES		
			dent will be able to								Τ
1.	Under	stand the develo	opment of electric power systems for	or various	-						-
		of vehicles.			а						
2.			nodeling and analysis of recent pov	wer	а	с	e	h	j		
		nics system.			u	C	C	11	J		
3.			n advanced power electronic conve	erters and	а	с	е	h	j		
4			for vehicular applications.					1			
4.	Design	DC and ACd	stribution architectures		a	с	e	h	J	<u> </u>	<u> </u>
Soc	ssion	Т	Description of Topic	Contact	C-D	-I-	IOs		Refe	rono	0
565	551011			hours	0		105		Nele	renc	e
			CRAFT POWER SYSTEMS	9							
			conventional electrical systems,								
1	l.		ion systems-overview of	3	C		1			1	
		vehicular pow	aircraft electrical distribution								
2	2.	systems	aircraft electrical distribution	3	C	C 1,3, 4		1			
3	3.	Stability analy	cic	3	C,D 1.		1, 2, 3			1	
			ACE POWER SYSTEMS	9	C,1	<u> </u>	1, 2, 5		1		
			international space station,				_				
4	4.		r system, secondary power system	2	C		1		1		
5	5.	Support system	ms, space craft power systems,	2	C,I	、 、	1, 3, 4	1		1	
).	alternate powe		2	C,I	,	1, 3, 4			1	
6	5.		ig system, electrical power	2	C,I)	1, 3, 4	1		1	
			ace based radar satellites	_	-,-		-, -, -, -				
			lysis and simulation								
-	7.		s – typical DC/DC converter in a r dc power electronic system with	3	C		1, 2, 3			1	
/	•		approximations of its inputs and	5			1, 2, 3			1	
		outputs									
			WER SYSTEMS FOR SEA	9	1	-					
			SEA VEHICLES	9							
			power system configurations,								
8	3.	*	nics building blocks – pebb	1	C		1			1	
		applications in				-+		<u> </u>			
9	Э.		nitecture for power electronic –	2	C,I)	1, 3, 4			1	
Direct stiffnes		centralized dig	s method - portal frames – single		+	-+					
1			rey – with and without sway	2	C,I)	2, 3			1	
			igital controller design and direct	-			1.0.0 .				
1	1.	stiffness metho		2	С, І	ן נ	1, 2, 3, 4			1	
			nent and Global stiffness matrices								
1			ransformations - Rotation matrix –	2	C,I)	2, 4			1	
Derivation of glo			global stiffness matrix from	-		-	<i>2</i> , 1			•	
		element stiffne									
			TOMOTIVE POWER	9							
		SYSTEMS	conventional 14V electric system			-+					
1.	3.	architecture	conventional 14 v electric system	1	C		1			1	
				I	1			1			

19.	Aerospace applications, other applications of fuel cells	4	С	1, 2	1
18.	Various alternate fuels cell vehicles, fuel cell transit bus technology current status and future technologies	4	С	1, 2, 3	1
17.	Introduction – important properties of fuel cells for vehicles, light-duty vehicles and heavy-duty vehicles	1	С	1	1
	UNIT V: FUEL CELL BASED VEHICLES	9			
16.	Machine in brief: induction, permanent magnet and axial flow, ISA coupling configurations	3	C,D	1, 2	1
15.	Advanced distribution systems, starter, alternator and integrated starter/alternator (ISA)	3	C,D	1, 2, 3, 4	1
14.	Advanced electrical loads, increasing the system voltage to 42V	2	C,D	1, 2, 3	1

Sl. No. TEXT BOOKS

1. A. Emadi, M. Ehsani and John M. Miller, "Vehicular Power Systems", Marcel Dekker, New York, 2004.

Course natu	re			Theory					
Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

15EE461E		Robust Control System	Robust Control Systems					
Co-requisite:	Nil							
Prerequisite:	15EE	211						
Data Book / Codes/Standards	Nil							
Course Category	Р	PROFESSIONAL ELECTIVE	CIRCUIT AND	SYSTEMS	•			
Course designed by	Department of Electrical and Electronics Engineering							
Approval	32nd	Academic Council Meeting, 2016						

	PURPOSE	To acquire knowledge on fundamental concepts, princi control systems.	ples, ai	nalysi	s and	desigr	n of F	lobus	st
INST	RUCTIONAL	OBJECTIVES		STUD	ENT	OUT	COM	ES	
At th	e end of the cour	se, student will be able to							
1.	1. Introduce norms, random spaces and robustness measures				e				
2.	Synthesize H ₂	optimal control and understand estimation techniques	а	с	e	h			
3.	Analyze H infi	nity optimal control techniques	а	с	e	h			
4.	Design H infin	ity control using LMI approach	а	с	e	h			
5.	Explore on syn through case st	а	с	e	h				

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: NORMS OF THE SYSTEM AND PERFORMANCES	9			
1.	Norms of vectors and Matrices - Norms of Systems	2	C	1	1,2
2.	Calculation of operator Norms, vector random spaces	2	C	1	1,2
3.	Specification for feedback systems, Co-prime factorization and Inner functions	3	C	1	1,2
4.	Structured and unstructured uncertainty, robustness	2	С	1	1,2
	UNIT II: H2 OPTIMAL CONTROL	9			
5.	Linear Quadratic Controllers - Controller Design by Minimization of a Cost Functional	2	C	2	1,2
6.	Characterization of H2 optimal controllers - Problem Formulation and Characterization Theorem -State Feedback	2	С	2	1,2
7.	H2 optimal estimation -KaIman Bucy Filter as Special H2 State Estimator	2	C	2	1,2
8.	LQG Controller	3	C,D	2	
	UNIT III: H-INFINITY OPTIMAL CONTROL-RICCATI APPROACH	9			
9.	Formulation – Characterization of H-infinity sub-optimal controllers by means of Riccati equations	3	С	3	1,2
10.	H-infinity control with full information using Mixed Hankel-Toeplitz Operators	3	C,D	3	1,2
11.	H infinity estimation	3	C,D	3	
	UNIT IV: H-INFINITY OPTIMAL CONTROL- LMI APPROACH	9			
12.	Formulation – Characterization of H-infinity sub-optimal controllers by means of LMI approach	3	C,D	4	1,2
13.	Properties of H-infinity sub-optimal controllers- Connection between Riccati- and LMI- approaches	3	С	4	1,2
14.	H-infinity synthesis with pole placement constraints - LMI Regions	3	C,D	4	1,2

Session	Description of Topic	Contact hours	C-D-I- O	IOs	Reference
	UNIT V: SYNTHESIS OF ROBUST CONTROLLERS AND CASE STUDIES	9			
15.	Synthesis of Robust Controllers	3	C,D	5	1-2
16.	Small Gain Theorem, D-K -iteration.	1	D	5	1-2
17.	Control of Inverted Pendulum, Robust Control of Second-order Plant	3	C,D	5	1-5
18.	μ Optimal Controller.	2	C,D	5	1-5
	Total contact hours	45			

LEARN	ING RESOURCES					
Sl. No.	TEXT BOOKS					
1.	U. Mackenroth "Robust Control Systems: Theory and Case Studies", Springer International Edition, 2010.					
2.	Burl, "Linear optimal control H2 and H-infinity methods", Addison W Wesley, 1998					
3.	Kue, Y.Q. Chen, D. P. Atherton, "Linear Feedback Control Analysis and Design with Matlab, advances					
	In Design and Control", Society for Industrial and Applied Mathematics, 2007.					
	REFERENCE BOOKS/OTHER READING MATERIAL					
4.	I. R. Petersen, V.A. Ugrinovskii and A. V. Savkin, "Robust Control Design using H- infinity Methods",					
	Springer, 2000.					
5.	M. J. Grimble, "Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems",					
	John Wiley and Sons Ltd., Publication, 2006.					

Course nature Theory									
Assessment	Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

15EE462E		Switched Mode Power Conversion		L 3	Т 0	P 0	C 3
Co-requisite:	NIL						
Prerequisite:	15EF	E301J					
Data Book / Codes/Standards	NIL						
Course Category	E	PROFESSIONAL ELECTIVE	ELECTRONICS				
Course designed by	Depa	Department of Electrical and Electronics Engineering					
Approval	32nd	Academic Council Meeting, 2016					

	PURPOSE	To acquire knowledge on the modeling and performanc	e of va	arious	config	gurati	ons o	of pov	wer
	FUNFUSE	converters							
INST	RUCTIONAL	OBJECTIVES		STUD	ENT	OUT	CON	AES	
At th	e end of the cou	rse, the student will be able to							
1.	Apply the cond	cept of ideal and real characteristics of switching							
	devices and design the reactive circuit elements for switched mode								
	converters								
2.	Understand the	operation and steady state analysis of Switching power	а	е					
	converters		a	C					
3.	Develop the kr	owledge on analysis, modeling and performance	а						
	functions of sv	vitching power converters.	a	e					
4.	Understand the	Closed-loop control of switching power converters	а	e	h	j			
5.	Familiarize wit	h the applications of Switched mode power converters.	а	e	h	j			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: DC-DC CONVERTERS	8			
1.	Power semiconductor switches - Diode, Controlled Switches	1	С	1	1,3
2.	Issues related to switches	1	С	1	3,4
3.	Reactive components-Design of Inductor, Transformer, Capacitor	2	С	1	3
4.	Energy storage – Capacitor, Inductor.	1	С	1	3
5.	Primitive Converter-Non-Isolated converter	2	С	1	3
6.	Isolated converters	1	С	1	3
	UNIT II : CCM AND DCM OPERATION OF CONVERTERS	10			
7.	Principles of Steady State Converter Analysis-Inductor Volt-Second Balance, Capacitor Charge Balance	2	С	2	1,2,3
8.	Design of various converter and determining the component using Small-Ripple Approximation	2	C,D	2	1,2,3
9.	Boundary conduction, DC transformer model	2	С	2	1,2,3
10.	Steady state analysis of DC-DC converter in Continuous Conduction Mode(CCM) and Discontinuous Conduction Mode(DCM)	2	С	2	1,2,3
11.	Problems- Non-Isolated DC-DC converters	2	С	2	1,2,3
	UNIT III:MODELING OF DC-DC CONVERTERS	10			
12.	Modeling of converters-State space representation	2	C,D	3	1,3
13.	State Space Model of Boost Converter	1	C,D	3	1,3
14.	Circuit Averaging Modeling Technique	2	CD	3	1,3
15.	PWM switch modeling	1	C,D	3	1,3
16.	Current Injected Equivalent Circuit Averaging(CIECA)	1	C,D	3	1,3
17.	Dynamic Model of Converters Operating in DCM	2	С	3	1,3
18.	Review of control theory, analysis of converter transfer functions	1	С	3	1,3
	UNIT IV: CONTROLLER DESIGN	9			
19.	DC-DC converter controller, Controller Structure	2	C,D	4	1,3
20.	Implementation of PID controller for Buck and Boost Converter	2	C,D	4	1,3
21.	Pulse Width Modulator	1	C,D	4	1,3
22.	Controller design principles	2	С	4	1,3
23.	Problem- Closed loop control of switched mode power converters	2	C,D	4	1,3
	UNIT V: APPLICATION OF DC-DC CONVERTERS	8			
24.	Application of DC-DC Converters in Power conditioning system	2	С	5	1,3
25.	Hybrid Electric Vehicle (HEV) Application	1	С	5	1,3
26.	Space application	1	С	5	1,3
27.	Renewable Energy System (RES)	1	С	5	1,3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
28.	Bidirectional power converters	1	C,D	5	1,3
	Multi-input converter Using High/Low Voltage Sources, Flux Additive DC-DC Converter	2	C,D	5	1,3
	Total contact hours	45			

LEARN	ING RESOURCES					
Sl. No.	TEXT BOOKS					
1.	Erickson, Robert W., Fundamentals of Power Electronics, Springer International edition, 6th edition, 2012.					
2.	Slobodan Cuk, Power Electronics: Advanced Topics and Design, TESLAco, 2015.					
	REFERENCE BOOKS/OTHER READING MATERIAL					
3.	V. Ramanarayanan, Course Material on Switched Mode Power Conversion, Department of Electrical					
	Engineering, Indian Institute of Science, Bangalore 560012.					
	http://minchu.ee.iisc.ernet.in/new/people/faculty/vr/book.pdf					
4.	Slobodan Cuk, "Advances in Switched-Mode Power Conversion Part I & II" IEEE Transactions on					
	Industrial Electronics, Vol: IE-30, 2007.					

Course nature Theory								
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :								

15EE463E		Embedded Systems		L 3	Т 0	P 0	C 3	
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book /	NIL							
Codes/Standards	INIL							
Course Category	E	PROFESSIONAL ELECTIVE	INTELLIGENT SYS	TEM	IS			
Course designed by	Dep	Department of Electrical and Electronics Engineering						
Approval	32 nd	Academic Council Meeting , 2016						

PURPC	DSE To acquire the concepts of Embedded system a	ts app	licatio	on.				
INSTR	UCTIONAL OBJECTIVES	S	TUD	ENT	OUI	FCON	AES	3
At the e	nd of the course, the student will be able to							
1.	Understand the Embedded hardware.	а						
2.	Comprehend the need and concepts of Real –Time Operating systems.	а	с	h	j	k		
3.	Realize the purpose of Processor and Software Architecture.	а						
4.	Learn about the development tools and debugging techniques.	а	k					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: EMBEDDED HARDWARE	10			
1.	Review of Microprocessors and Microcontrollers, Embedded hardware, Embedded system overview.	1	С	1	3
2.	Design challenges, processor- IC and design technology.	3	С	1	3
3.	Custom single purpose processors: combinational logic, sequential logic.	2	С	1	3
4.	Custom single purpose processors and RT level custom single purpose processor design, optimizing custom single processor.	2	С	1	3
5.	Designing of GCD and Fibonacci series custom single purpose processors.	2	C,D,I	1	3
	UNIT II: PROCESSOR ARCHITECTURE	8			
6.	General purpose processor: software, standard single purpose processor.	3	C	3	1
7.	Peripheral interrupts: microprocessor architecture.	2	С	3	1
8.	Interrupt -Basic-shared data problem-interrupt latency.	3	Ι	3	2
9.	UNIT III: SYSTEM DEVELOPMENT ENVIRONMENTS	9			
10.	The execution environment-memory organization.	2	С	4	1
	System space-code space-data space-unpopulated memory space.	1	С	4	1
11.	I/O space system start up interrupts response cycle.	1	С	4	1
12.	Function calls and stack frames.	1	С	4	1
13.	Run time environment-object placement.	2	С	4	1
14.	Case study: stepper motor control and DC motor control.	2	C,I	4	1
	UNITIV:SOFTWARE ARCHITECTURE AND DEVELOPMENT TOOLS	10			
15.	Software architecture: round – robin-round-robin with interrupts.	3	С	3	2
16.	Function queue – scheduling architecture.	2	Ι	3	2
	Real time operating system architecture.	3	Ι	2	2
17.	Development tools: target machines.	1	Ι	4	2
18.	Linker/locators for embedded software debugging techniques.	1	С	4	2
19.	UNIT V: REAL TIME OPERATING SYSTEMS	8			
20.	Introduction: task and task status.	1	С	2	2
21.	Tasks and data semaphore and shared data.	2	D,I	2	2
22.	More operating system services message queues.	1	D, I	2	2
23.	Mail boxes and pipes-timer functions, Events-memory management.	1	Ι	2	2

Session	Description of Topic		C-D- I-O	IOs	Reference
24	Interrupt routines in an RTOS environment. EMBEDDED SYSTEM APPLICATION DEVELOPMENT: Case Study of Washing Machine- Automotive Application- Smart card System Application.	3	C,D,I	2	2
	Total contact hours		4	5	

LEARN	ING RESOURCES
Sl. No.	TEXT BOOKS
1.	Arnold S. Berger, "Embedded systems design: An Introduction to processor, tools and techniques",
	CMP media, 2002.
2.	David E.Simon,"An Embedded software primer", Pearson Education, 12th Indian reprint, 2005.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Frank Vahid and Tony Givargis: "Embedded system design: a unified Hardware/software approach",
	Pearson Education Asia, 1999.
4.	Raj Kamal, "Embedded Systems- Architecture, Programming and Design", Tata McGraw Hill, 2006.
5.	Tammy Noergaard, "Embedded System Architecture, A comprehensive Guide for Engineers and
	Programmers", Elsevier, 2006.
6.	C.M. Krishna, Kang, G.Shin, "Real Time Systems", McGraw Hill, 1997.
7.	"ARM education weblink" {https://www.arm.com/resources/education/education-kits}

Course natu	Course nature Theory										
Assessment	Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total				
semester	Weightage	10%	15%	15%	5%	5%	50%				
End semester examination Weightage :											

CUSTOMIZED TO OTHER DEPARTMENT

15EE231	Electrical Machines	L 3	Т 0	P 0	C 3
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book / Codes / Standards	NIL				
Course Category	P PROFESSIONAL CORE ELECTRICAL MAC	CHINE	S		
Course designed by	Dept of Electrical and Electronics Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PURPO	PURPOSE To acquire knowledge about different types of electrical machines.							
INSTRU	UCTIONAL OBJECTIVES	STUDENT OUTCOMES						
At the e	and of the course, the student will be able to							
1.	1. Gain knowledge about the construction, working, characteristics and applications of DC generators & DC motors.							
2.	Understand the construction, working, characteristics and testing of single phase transformers.	а	e					
3.	Comprehend the construction, principle of operation, characteristics of three phase induction motor, single phase induction motor, special machines and their application.	a	e					
4.	Analyze the constructions and performance of synchronous machines.	а	e					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	References
	UNIT I: DC MACHINES	9			
1	Constructional details of DC machine	1	С	1	1,2
2	Working principle of DC generator	1	С	1	1,2
3	Types of Generators	1	С	1	1,2
4	EMF equation, no load and load characteristics.	2	С	1	1,2
5	Principle of operation of DC motors, Back emf	1	С	1	1,2
6	Torque equation	1	С	1	1,2
7	Characteristics of shunt, series and compound motors	2	С	1	1,2
	UNIT II: TRANSFORMER	9			
8	Principle of operation, Constructional features of single phase transformers	1	С	2	1,2
9	EMF equation	1	С	2	1,2
10	Transformer on no load and on load-phasor diagram	1	С	2	1,2
11	Effects to resistance and leakage reactance of the windings	1	С	2	1,2
12	Equivalent circuit, Voltage regulation	1	С	2	1,2
13	Testing of transformer: Load test	1	С	2	1,2
14	Testing of transformer: Open circuit and short circuit test	2	С	2	1,2
15	Testing of transformer: Sumpner's test.	1	С	2	1,2
	UNIT III: THREE PHASE INDUCTION MOTOR	9			1,2
16	Production of rotating magnetic field	1	С	3	1,2
17	Construction and types of three phase induction motor.	1	С	3	1,2
18	Principle of operation, slip, Torque equations, Starting torque equation	1	С	3	1,2
19	Torque slip characteristics	1	С	3	1,2
20	Power stages	1	С	3	1,2
21	No load & blocked rotor tests, Equivalent circuit	2	С	3	1,2
22	Methods of speed control	1	С	3	1,2
23	Need for starters, Various types of starters	1	С	3	1,2
	UNIT IV: SINGLE PHASE INDUCTION MOTOR & SPECIAL MACHINES	9			
24	Double revolving field theory, Torque speed characteristics	1	С	3	1,2

Session	Description of Topic	Contact hours	C-D- I-O	IOs	References
25	Equivalent circuit, No load Blocked rotor test (Qualitative treatment only)	1	С	3	1,2
26	Starting methods of Single phase motors	1	С	3	1,2
27	Construction, principle of operation and applications of linear induction motor, universal motor, stepper motor	3	С	3	1,2
28	Construction, principle of operation and applications of reluctance motor, repulsion motor, AC series Motor	3	С	3	1,2
	UNIT V: SYNCHRONOUS MACHINES	9			
29	Constructional features and types of synchronous machines	1	С	4	1,2
30	emf equation, armature reaction, alternator on load	2	С	4	1,2
31	Voltage regulation (EMF method only)	2	С	4	1,2
32	Working principle of synchronous motors	1	С	4	1,2
33	Types of excitation, constant load variable excitation, constant excitation variable load, phasor diagram	2	2 C 4		1,2
34	Starting methods	1	С	4	1,2
	Total contact hours			45	

Sl. No.	TEXT BOOKS
1	Nagarath.I.J. and Kothari.D.P., "Electric Machines", T.M.H. Publishing Co Ltd., New Delhi, 4th edition
1	2010.
2	Thereja .B.L 'A Text book of Electrical Technology,' Volume- II, S.Chand & Co Ltd, 2008
3	Mulukutla S.Sarma and Mukesh K.Pathak, "Electric Machines", Cengage Learning., New Delhi, 2012
	REFERENCE BOOKS / OTHER READING MATERIAL
4	Fitzgerald Kingsley and Umans, "Electric Machinery" McGraw Hill Books co., 7th Edition, New Delhi,
4	2013.
5	R.K.Srivastava, "Electric Machines", Cengage Learning., New Delhi, 2 nd edition, 2013

Course natu	re			Theory						
Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15EF231L	Electrical Machine	es Laboratory	T P 3	C 2			
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	Nil						
Course Category	P PROFESSIONAL CORE	ELECTRICAL MACHINES					
Course designed by	Dept. of Electrical and Electronics En	Dept. of Electrical and Electronics Engineering					
Approval	32 nd Academic Council Meeting, 201	16					

	PURPOSE To develop skills in conducting experiments for different types of electrical machines									
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES					/IES					
At th	e end of the course, the student will be able to									
1.	Understand the characteristics and performance of DC, induction and synchronous machines.			e						
2.	Gain knowledge about speed control techniques of DC motor and induction motor.	а	b	e						
3.	Understand the working of single phase transformer.	а	b	e						

Sl. No.	Description of experiments	Contact hours	C-D-I- O	IOs	Reference
1.	OCC and Load characteristics of DC Generator	6	I,O	1	1
2.	Load test on DC motor	6	I,O	1	1
3.	Speed control of DC Shunt motor.	3	I,O	1	1
4.	Load test on single phase transformer	3	I,O	2	1
5.	OC & SC test on single phase transformer	3	I,O	2	1
6.	Sumpner's test.	3	С	2	1
7.	Load test on induction motor	6	I,O	1	1
8.	No load and blocked rotor test on 3-phase induction motor: To draw equivalent circuit	3	I,O	1	1
9.	Voltage regulation of alternators by EMF method	3	I,O	1	1
10.	Determination of 'V' and inverted 'V' curves	3	I,O	1	1
11.	Speed control of squirrel cage induction motor by variable frequency	3	I,O	1	1
12.	Rotor Rheostat speed control of slip ring induction motor	3	I,O	1	1
	Total contact hours			45	

LEARN	LEARNING RESOURCES							
Sl. No.	REFERENCES							
1.	Laboratory Manual							
2.	Nagarath.I.J. and Kothari.D.P., " <i>Electric Machines</i> ", T.M.H. Publishing Co Ltd., New Delhi, 4 th edition 2010.							
3.	Gupta., "Theory and Performance of Electrical Machines", . Kataria and Sons, 14th edition 2009.							

Course natu	Course nature Practical										
Assessment	Assessment Method (Weightage 100%)										
In-	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Vo	ce Model examination	Total					
semester	Weightage	40%	5%	5%	10%	60%					
				End semester exa	nination Weightage :	40%					

15EE232	Electrical Engineering And Control Systems	L 3	Т 0	P 0	C 3		
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	P PROFESSIONAL CORE ELECTRICAL MACH	HINE:	5				
Course designed by	Department of Electrical and Electronics Engineering						
Approval	32 nd Academic Council Meeting, 2016						

Р	URPOSE	RPOSE To give students, a fair knowledge on the working of various electrical machines and to provide sound knowledge in the basic concepts of control theory.									
INS	TRUCTIC	NAL OBJECTIVES	ST	UDEN	T	OU.	ГСО	MES			
At t	he end of t	he course, the student will be able to									
		tand the concepts of circuits.	а								
2.	To acquir DC machi	e in depth knowledge of operation, construction and characteristics of nes, single phase induction motor and some special machines.	а	с							
3. To provide adequate knowledge in the time response of systems and steady state a a											
4.	To study t	he stability in frequency domain	a								

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
1.	UNIT I: ELECTRIC CIRCUITS (DC Circuits)	09			
2.	Dependent and independent sources	1	С	1	1
3.	Thevenin's theorem - Norton's theorem	2	С	1	1
4.	Superposition - Maximum power transfer	1	С	1	1
5.	Graph of a network - Trees	2	С	1	1
6.	Chords and branches	1	С	1	1
7.	Tie-set and cut-set of a graph	2	С	1	1
	UNIT II: DC MACHINES (Qualitative Treatment only)	09			
8.	Constructional details and operating principle of D.C. generators	2	С	2	3
9.	Emf equation	2	С	2	3
10.	DC Generator Characteristic	1	С	2	3
11.	Principle of operation of D.C. motors	2	С	2	3
12.	DC motor Characteristic - Starting.	2	С	2	3
	UNIT III: AC MACHINES (Qualitative Treatment only)	09			
13.	Single-phase induction motor - double field revolving theory	2	С	2	1,3
14.	Constructional details of three phase induction motor	2	С	2	1,3
15.	Principles of single phase transformers - EMF equation.	2	С	2	1,3
16.	Servomotors - Stepper motor	1	С	2	1,3
17.	Universal motor - Applications	2	С	2	1,3
	UNIT IV: MATHEMATICAL MODELS OF PHYSICAL SYSTEMS	09			
18.	Definition and classification of system - terminology and structure of feedback control theory	2	С	3	2,4
19.	Differential equation of physical systems - hydraulic and pneumatic systems Steady state errors - error constants	2	С	3	2,4
20.	Block diagram algebra - Signal flow graphs	2	С	3	2,4
21.	Time response of first and second order system	1	С	3	2,4
22.	Stability by Routh-Harwitz criterion -Simple problems.	2	C	3	2,4

	UNIT V: TRANSFER FUNCTION and STATE VARIABLE ANALYSIS	09			
23.	Time Response analysis of II order system - Frequency response	2	С	4	2,4
24.	Bode plots	2	С	4	2,4
25.	Stability in frequency domain using Nyquist stability criterion	2	С	4	2,4
26.	Concept of state variable - State models for linear and continuous time systems.	3	С	4	2,4
	Total hours	45			

LEARNI	EARNING RESOURCES							
Sl. No.	TEXT BOOKS							
1.	Deshpande M.V, "Electrical Machines", PHI Learning Private Limited, New Delhi, 2015.							
2.	Nagrath I J and Gopal.M., "Control Systems Engineering", Anshan Pub, 2013.							
REFERE	INCE BOOKS							
3.	Nagarath.I.J, and Kothari.D.P, "Electrical Machines", Tata McGraw Hill Publishing Company, New							
	Delhi, 2 nd edition, 2008.							
4.	Katsuhiko Ogata, "Modern Control Engineering"-fifth edition, Prentice Hall of India Private Ltd, New							
	Delhi, 2014.							

Course natur	Course nature Theory								
Assessment	Assessment Method (Weightage 100%)								
In-semester	Assessment tool	Cycle test I	Cycle test П	Cycle Test III	Surprise Test	Quiz	Total		
	Weightage	10%	15%	15%	5%	5%	50%		
	End semester examination Weightage :								

15EF234J		Fundamentals Of Circuit	L T P C 3 0 2 4	
Co-requisite:	NIL			
Prerequisite:	15EE	E101		
Data Book / Codes/Standards	NIL			
Course Category	Р	PROFESSIONAL CORE	MEDICAL ELEC	TRONICS
Course designed by	Dep	artment of Biomedical Engineering		
Approval	32nd	Academic Council Meeting, 2016		

PURPOSEThe purpose of learning this course on Fundamentals of Circuits & Networks for biom Engineering student is to acquire knowledge about the basics of circuit analysis, ne theorems and AC circuits which can be used for design and development of medical de									twork
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At the	At the end of the course, student will be able to								
1.	Apply the mes	h & nodalanalysis in a given electrical circuit.	a						
2.	Differentiate th	ne various network theorems.	a						
3. Analyze the AC circuits and coupled circuits.									
4. Find the total responses of RL, RC & RLC circuits.				b	c				
5.	Analyze the tw	o port network parameters.	a	с					

Session	Description of Topic (Theory)	Contact hours	C-D-I- O	IOs	Reference
	UNIT I: NODAL AND MESH ANALYSIS	9			
1.	Relationship of circuit analysis to engineering, Kirchhoff's current Law, Kirchhoff's voltage law	1	C,D	1	1,3
2.	Voltage and Current sources	1	С	1	3
3.	Nodal analysis & supernodal analysis	2	С	1	1,2
4.	Mesh analysis & super mesh analysis	2	С	1	1,2
5.	Mesh equation & nodal equation by inspection method	3	C	1	1
	UNIT II: CIRCUIT ANALYSIS TECHNIQUES	9			
6.	Star-delta transformation, source transformation technique	2	C	2	1,2
7.	Thevenin's theorem, Norton's theorem	2	C,I	2	1,2
8.	Superposition theorem	2	C,I	2	1,2
9.	Maximum power transfer theorem	1	C,I	2	1,2
10.	Reciprocity theorem, compensation theorem	2	C,I	2	1,2
	UNIT III: AC CIRCUITS AND COUPLED CIRCUITS	9			
11.	Power & Power factor	1	С	3	1
12.	Series resonance-Q-factor, bandwidth	2	C,D	3	1
13.	Parallel resonance-Q-factor, bandwidth	2	C,D	3	1
14.	Self-inductance, Mutual inductance	1	С	3	1,2
15.	Modeling of coupled circuits	1	C,D	3	2
16.	Dot convention in coupled coils	1	C	3	1,2
17.	Series & parallel connection of coupled coils	1	C	3	1,2
	UNIT IV: TRANSIENT ANALYSIS	9			
18.	Circuit analysis using Laplace transform technique	1	C	4	2
19.	Transient response of passive circuits (RC, RL and RLC) for DC excitations	3	C	4	2
20.	Transient response of passive circuits (RC & RL) for AC with sinusoidal excitations	2	C	4	2
21.	Transient response of RLC circuits for AC with sinusoidal excitations	2	C	4	2
22.	Practical perspective: artificial pacemaker	1	С	4	4
	UNIT V: TWO PORT NEIWORKS	9			
23.	Network functions of one port and two port networks	1	C	5	1
24.	Poles and Zeros of network functions	1	С	5	1

Session	Description of Topic (Theory)	Contact hours	C-D-I- O	IOs	Reference
25.	Two port parameters: Z, Y, h (derivation & problems)	3	C,D	5	1,2
26.	Two port parameters: inverse h, ABCD (derivation & problems)	2	C,D	5	1,2
27.	Practical perspective: Characterizing an unknown circuit	2	С	5	4
	Total contact hours	45			

Sl. No.	Description of experiments	Contact hours	C-D-I- O	IOs	Reference	
1.	Verification of KVL & KCL	2	Ι	1,2	5	
2.	Verification of Thevenin's theorem	2	Ι	1,2	5	
3.	Verification of Norton's theorem	2	Ι	1,2	5	
4.	Verification of Superposition theorem	2	Ι	1,2	5	
5.	Verification of Reciprocity theorem	2	Ι	1,2	5	
6.	Verification of Compensation theorem	2	Ι	1,2	5	
7.	Verification of Maximum power transfer theorem	2	Ι	1,2	5	
8.	Verification of Millman's theorem	2	C,I	1,2	5	
9.	Verification of KVL, KCL and all theorems using simulation approach	8	D,I	3	5	
10.	Series resonant circuit using simulation approach	2	D,I	3	5	
11.	Parallel resonant circuit using simulation approach	2	D,I	3	5	
12.	Transients using simulation approach	2	Ι	4	5	
	Total contact hours	30				

LEARN	LEARNING RESOURCES					
Sl. No.	TEXT BOOKS					
1.	Sudhakar.A and Shyammohan S P, " <i>Circuits and networks-analysis and synthesis</i> ", Tata McGraw Hill, 5 th edition, 2015.					
2.	Salivahanan S and Pravin Kumar S, "Circuit theory", Vikas Publishing House Pvt Limited, 1st edition,					
	2014.					
	REFERENCE BOOKS/OTHER READING MATERIAL					
3.	William H Hayt, Jr., Jack E Kemmerly & Steven M Durbin, "Engineering circuit analysis", McGraw Hill,					
	8 th edition, 2012.					
4.	James W Nilsson and Susan A Riedel, "Electric circuits", Pearson Education, 10th edition, 2014.					
5.	Fundamentals of circuits & networks lab manual.					

Course nature				Theory	Theory + Practical					
Assessment N	fethod – Theory Co	mponent (Weight	tage 50%))						
In-semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surpri Test	()1117		Total		
	Weightage	10%	15%	15%	5%	<u>6 5%</u>		% 5%		50%
End semester examination Weightage :										
Assessment N	fethod – Practical C	Component (Weig	htage 50%	ó)						
	A	Ermoningente	Record	MCQ/Quiz/Viva		Model		Total		
In-semester	Assessment tool Ex	Experiments		Voce		examination				
	Weightage	40%	5%	5% 10%		5% 10%		60%		
End semester examination Weightage :							40%			